Small magnetic particles navigate therapeutic genes through the body

Health professionals send genes and healthy cells on their way through the bloodstream so that they can, for example, repair tissue damage to arteries.

But do they reach their destination in sufficient quantities? Scientists of the PTB have developed a highly sensitive measuring method with which the efficiency of this therapy can be investigated: Small magnetic particles which are situated on the planted gene or on the planted cell can with the aid of an external magnetic field be specifically directed to the location of the damage. There the researchers determine, accurate to the picogram per cell, the quantity of the magnetic material – and thus also the quantity of the therapeutically effective genes or cells. In a joint study with the University of Bonn it became clear: By means of the magnetic method it is possible to dramatically increase the efficiency of the gene transfer in comparison to the non-magnetic method.

Magnetic nanoparticles can support or even enable gene transfer under clinically relevant experimental conditions. For the transduction of human cells, gene carriers were coupled to magnetic nanoparticles and dragged into the cells by magnetic field gradients. The efficiency of magnetic transduction turned out to be much higher than the nonmagnetic procedure. An additional welcome side effect is the "magnetization" of the cells after the incorporation of nanoparticles. This may enable the targeted transport of the cells to regions of interest.

A closer look at the underlying mechanism of magnetic gene transfer was taken by the quantification of the magnetic material that was delivered to the cells. The required highly sensitive measurements in the range of a few picogramm per cell were made by PTB using magnetorelaxometry. The good correlation between measurement data and gene transfer encourages to use magnetorelaxometry for monitoring the efficiency of gene and cell transfer, possibly even in vivo.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gut microbes revealed as hidden drivers of aging and cellular decline