Apr 1 2009
The power of magnetism may address a major problem facing bioengineers as they try to create new tissue -- getting human cells to not only form structures, but to stimulate the growth of blood vessels to nourish that growth.
A multidisciplinary team of investigators from Duke University, Case Western Reserve University and the University of Massachusetts, Amherst created an environment where magnetic particles suspended within a specialized solution act like molecular sheep dogs. In response to external magnetic fields, the shepherds nudge free-floating human cells to form chains which could potentially be integrated into approaches for creating human tissues and organs.
The cells not only naturally adhere to each other upon contact, the researchers said, but the aligned cellular configurations may promote or accelerate the creation and growth of tiny blood vessels.
"We have developed an exciting way of using magnetism to manipulate human cells floating freely in a solution containing magnetic nanoparticles" said Randall Erb, fourth-year graduate student in the laboratory of Benjamin Yellen, assistant professor of Mechanical Engineering and Materials Science, at Duke University's Pratt School of Engineering. "This new cell assembly process holds much promise for tissue engineering research and offers a novel way to organize cells in an inexpensive, easily accessible way."