New kind of treatment for sexually transmitted diseases

Yale researchers describe a breakthrough in safe and effective administration of potential antiviral drugs - small interfering RNA (siRNA) molecules that silence genes - the first step in development of a new kind of treatment for sexually transmitted diseases (STDs). The work is reported May 4 as an advance online publication of Nature Materials.

"RNA interference is a promising approach for prevention and treatment of human disease," said lead author Kim Woodrow, Yale postdoctoral fellow in Yale's School of Engineering & Applied Science. "We wanted to develop a new strategy of delivering siRNAs with a FDA-approved material."

As their name suggests, siRNAs interfere and knock out the function of genes in higher organism as well as in microbes that may cause STDs. The researchers designed siRNAs to target a gene expressed widely in the lining of the female mouse reproductive tract, in this proof-of-principle work.

Using densely-loaded nanoparticles made of a biodegradable polymer known as PLGA, the researchers created a stable "time release" vehicle for delivery of siRNAs to sensitive mucosal tissue like that of the female reproductive system.

They found that the particles, loaded with the drug agent, moved effectively in two important ways, penetrating to reach cells below the surface of the mucosa and distributing throughout the vaginal, cervical, and uterine regions. Furthermore, the siRNAs stayed in the tissues for at least a week and knockdown of gene activity lasted up to 14 days.

While past work has focused on delivery of siRNAs with liposomes, bubble-like carriers made of phospholipids similar to those found in cell membranes, liposomes are potentially more toxic to the mucosal tissues and are unable to provide sustained release. In the current work, the researchers demonstrated that PLGA nanoparticles were safer than the best current lipid vehicles.

Gene interference therapy is moving rapidly from basic research to application. The PLGA packaging these researchers chose is already approved as safe and non-toxic by the FDA, speeding the path to clinical trials for infectious agents such as HPV and HIV.

"Before human clinical testing can begin, our next step in research will be to test this approach directly in disease models - for example in the HIV model mice that have an immune system genetically identical to humans," said senior author W. Mark Saltzman, the Goizueta Foundation Professor of Biomedical Engineering & Chemical Engineering.

This approach holds promise for global health and the ability of people to self-apply antimicrobial treatments. Woodrow said, "It is safe and effective and much easier than getting an injection of vaccine."

Comments

  1. Kim Kim Canada says:

    Hello, I was reading the article on Gene Interferance Therapy, dated May 2009, and was wondering if this procedure is due to be offered to the public, at a cost if not covered by medical?  I realize this article is dated only from may and that this probaby needs FDA approval, but I was wondering if it is even now approved to be safe for public use, and if so, where can I obtain this?  I live in Canada, but would potential patients of this therapy be able to travel if it is not yet offered in North America?  

    Please let me know, asap.  I look forward to any comments you have.

    THANK-YOU.  

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Short-chain fatty acids propionate and butyrate directly modify chromatin to regulate gene expression