Doctoral candidate sheds new light on the biology of Leishmania parasites

Professor Albert Descoteaux's team at Centre INRS - Institut Armand-Frappier has gained a better understanding of how the Leishmania donovani parasite manages to outsmart the human immune system and proliferate with impunity, causing visceral leishmaniasis, a chronic infection that is potentially fatal if left untreated. This scientific breakthrough was recently published in PLoS Pathogens.

Some 350 million people live in areas where leishmaniasis can be contracted. Over 90% of cases are reported in India, Bangladesh, Nepal, Sudan, and Brazil. Leishmaniasis is also found in Mexico and elsewhere in South America. There are no effective vaccines to prevent leishmaniasis, and resistance issues greatly reduce the efficacy of conventional medications.

The parasite, which is transmitted to humans during the blood meal of infected sand flies, is internalized via macrophages in the liver, spleen, and bone marrow. However, this parasite manages to alter the normal phagocytosis process (destruction of foreign bodies), resist this process, replicate itself, and infect other macrophages. This resistance process notably involves blocking the normal acidification process within the macrophage by disrupting membrane fusions.

To date, few studies have attempted to identify the regulators of these membrane fusions and their role in the phagolysosomal biogenesis process (a compartment where pathogenic microorganisms are usually killed). The work by doctoral candidate Adrien Vinet and Professor Descoteaux shed new light on the biology of Leishmania parasites, particularly the molecular mechanisms by which they manage to outsmart the human immune system.

Source: INRS

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How gut microbiome and fiber diversity shape chronic disease outcomes