New research may help in understanding mechanisms involved in blood flow-related disorders

Red blood cells, which make up 45 percent of blood, normally take the shape of circular cushions with a dimple on either side. But they can sometimes deform into an asymmetrical slipper shape. A team of physicists have used simulations to explore how fluid flow might be responsible for this deformation, as well as how the deformation in turn affects blood flow. The insights could help understand the mechanisms involved in arterial disease and other blood flow-related ailments. Their research is reported in Physical Review Letters and highlighted with a Viewpoint in the October 26 issue of Physics (Physics.aps.org).

When a red blood cell flows through an artery, one face usually balloons out like a parachute, but sometimes the cell can deform to resemble a slipper. To find out why, Badr Kaoui at the Universit- Joseph Fourier in Grenoble, France and his colleagues modeled the cells as two-dimensional fluid-filled sacks flowing in a liquid. They found that when the cells weren't sufficiently plump, the symmetric parachute collapsed into a slipper. They also found that this morphing helped the sacks catch up with the rest of the fluid, suggesting that the slipper shape achieves more efficient blood flow.

Little is known about how the shape of red blood cells could change how they transport oxygen or how they interact with chemicals in the body. More generally, understanding circulation is important to pathology of illnesses like coronary heart disease. The ailment, which develops when plaque obstructs blood flow in an artery, is the leading cause of death in the United States. Kaoui and his colleagues' research takes important first steps toward understanding the consequences of red blood cell shape and behavior on overall blood flow.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research links COVID-19 vaccines to temporary facial palsy in over 5,000 patients