Lab grown muscle cells raise hope for gastric reflux and fecal incontinence

A new study shows that muscle cells grown in the lab can restore an intestine's ability to squeeze shut properly. The work, performed in dogs and rats, might ultimately help treat patients with conditions such as gastric reflux and fecal incontinence.

This technique may be used to strengthen sphincters, which are the bands of muscle that separate the major sections of your intestinal tract. Weakness in these areas can cause gastrointestinal esophageal reflux disease, or GERD, which affects 25 million adults in the United States. It is also a cause of fecal incontinence, or loss of control of the bowels, which afflicts more than 5 percent of adults under 40, especially women after childbirth; its prevalence increases with age.

"This represents a very logical and new direction for treatment of such conditions," said Stanford professor of medicine Pankaj Pasricha, MD, lead author of the study in the December 2009 issue of Gastrointestinal Endoscopy. "After injecting muscle cells in that area of weakness, those muscle cells thrive and get integrated into the existing tissues, and then add to the strength of the sphincter," added Pasricha, chief of gastroenterology and hepatology at Stanford.

Source: Stanford University Medical Center

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Can HIIT's metabolic benefits last? New study explores post-exercise sustainability in diabetes