Robarts researcher identifies protein which regulates cell suicide

When cells experience DNA damage, they'll try to repair it. But if that fails, the damaged cells are supposed to self-destruct, a process called apoptosis. A cancer researcher at Robarts Research Institute at The University of Western Ontario has identified a protein that regulates apoptosis, a new discovery which has implications for both the diagnosis and treatment of cancer. Caroline Schild-Poulter's findings are now published online in the journal Molecular Cancer Research.

"The protein we've identified, RanBPM, is directly involved in activating apoptosis," explains Schild-Poulter who is also an assistant professor in the Department of Biochemistry at Western's Schulich School of Medicine & Dentistry. "One of the hallmarks of cancer is that the cells don't initiate apoptosis despite having defects in their genetic material. In other words the damaged cells do not commit suicide, and this develops into cancer. Failure to activate apoptosis also makes it difficult to cure cancer. You cannot kill these cells by causing DNA damage to them using chemotherapy or radiation, because these cells resist dying."

While more research is needed to fully understand how this protein functions, Schild-Poulter believes RanBPM could be targeted to re-activate apoptosis, killing cancer cells. The protein may also be a marker used to predict whether a tumour will go on to become malignant.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Barcoding small extracellular vesicles with new CRISPR-based system