Antioxidants can also harm

Antioxidants increasingly have been praised for their benefits against disease and aging, but recent studies at Kansas State University show that they also can cause harm.

Researchers in K-State's Cardiorespiratory Exercise Laboratory have been studying how to improve oxygen delivery to the skeletal muscle during physical activity by using antioxidants, which are nutrients in foods that can prevent or slow the oxidative damage to the body. Their findings show that sometimes antioxidants can impair muscle function.

"Antioxidant is one of those buzz words right now," said Steven Copp, a doctoral student in anatomy and physiology from Manhattan and a researcher in the lab. "Walking around grocery stores you see things advertised that are loaded with antioxidants. I think what a lot of people don't realize is that the antioxidant and pro-oxidant balance is really delicate. One of the things we've seen in our research is that you can't just give a larger dose of antioxidants and presume that there will be some sort of beneficial effect. In fact, you can actually make a problem worse."

David C. Poole and Timothy I. Musch, K-State professors from both the departments of kinesiology and anatomy and physiology, direct the Cardiorespiratory Exercise Laboratory, located in the College of Veterinary Medicine complex. Researchers in the lab study the physiology of physical activity in health and disease through animal models. Copp and Daniel Hirai, an anatomy and physiology doctoral student from Manhattan working in the lab, have conducted various studies associated with how muscles control blood flow and the effects of different doses and types of antioxidants.

Abnormalities in the circulatory system, such as those that result from aging or a disease like chronic heart failure, can impair oxygen delivery to the skeletal muscle and increase fatigability during physical activity, Copp said. The researchers are studying the effects antioxidants could have in the process.

"If you have a person trying to recover from a heart attack and you put them in cardiac rehab, when they walk on a treadmill they might say it's difficult," Poole said. "Their muscles get sore and stiff. We try to understand why the blood cells aren't flowing properly and why they can't get oxygen to the muscles, as happens in healthy individuals."

Copp said there is a potential for antioxidants to reverse or partially reverse some of those changes that result from aging or disease. However, K-State's studies have shown that some of the oxidants in our body, such as hydrogen peroxide, are helpful to increase blood flow.

"We're now learning that if antioxidant therapy takes away hydrogen peroxide - or other naturally occurring vasodilators, which are compounds that help open blood vessels - you impair the body's ability to deliver oxygen to the muscle so that it doesn't work properly," Poole said.

Poole said antioxidants are largely thought to produce better health, but their studies have shown that antioxidants can actually suppress key signaling mechanisms that are necessary for muscle to function effectively.

"It's really a cautionary note that before we start recommending people get more antioxidants, we need to understand more about how they function in physiological systems and circumstances like exercise," Poole said.

Hirai said the researchers will continue to explore antioxidants and the effects of exercise training. Their studies are looking at how these can help individuals combat the decreased mobility and muscle function that comes with advancing age and diseases like heart failure.

"The research we do here is very mechanistic in nature, and down the road our aim is to take our findings and make recommendations for diseased and aging populations," Copp said.

Source: Kansas State University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Exploring how biological clocks measure aging and predict mortality