Breakthrough in anti-malarial drug development

Multinational team of researchers focuses on how parasites use enzymes to survive and spread disease

Malaria causes more than two million deaths each year, but an expert multinational team battling the global spread of drug-resistant parasites has made a breakthrough in the search for better treatment. Better understanding of the make-up of these parasites and the way they reproduce has enabled an international team, led by John Dalton, a biochemist in McGill's Institute of Parasitology, to identify a plan of attack for the development of urgently needed new treatments.

Malaria parasites live inside our red blood cells and feed on proteins, breaking them down so that they can use the proceeds (amino acids) as building blocks for their own proteins. When they have reached a sufficient size they divide and burst out of the red cell and enter another, repeating the process until severe disease or death occurs. Dalton and his colleagues found that certain "digestive enzymes" in the parasites enable them to undertake this process. Importantly, the researchers have also now determined the three-dimensional structures of two enzymes and demonstrated how drugs can be designed to disable the enzymes.

"By blocking the action of these critical parasite enzymes, we have shown that the parasites can no longer survive within the human red blood cell," Dalton explains. The discovery will be published in the Proceedings of the National Academy of Sciences, and is the result of collaboration including Australia's Queensland Institute of Medical Research, Monash University and the University of Western Sydney, Wroclaw University of Technology in Poland and the University of Virginia in the U.S. The team is putting their findings into action immediately and is already pursuing anti-malarial drug development.

Source: McGill University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Liver cell aging can trigger multi-organ failure