A team of researchers, led by Pier Paolo Pandolfi, at Beth Israel Deaconess Medical Center, Boston, has identified a new type of cellular senescence (i.e., irreversible arrest of cell growth) and determined a way to enhance it to suppress prostate tumor development and growth in mice.
Previous work by Pandolfi and colleagues determined that inactivation of the protein Pten leads to a senescence response that opposes tumorigenesis. In this study, Pten-loss-induced cellular senescence (PICS) was found to be distinct from another form of cellular senescence known as oncogene-induced senescence in that it did not cause cellular proliferation and DNA damage. This was important because these two consequences of oncogene-induced senescence mean that enhancing this process for the treatment of cancer is not a viable option. As pharmacological inhibition of PTEN was found to drive senescence and inhibit tumor development and growth in vivo in a human xenograft model of prostate cancer, the authors suggest that enhancing PICS might provide a new approach for cancer prevention and therapy.