Researchers identify potential therapeutic targets for treatment of neuroblastoma

A team of researchers, led by Patrick Mehlen, at Universit- de Lyon, France, has identified the protein NT-3 and the cell-surface molecule to which it binds (TrkC) as potential therapeutic targets for the treatment of neuroblastoma - the most frequent solid tumor in young children- by studying human neuroblastoma cells in vitro and after xenotransplantation into mice and chicks.

In the study, NT-3 was found to be expressed at increased levels in aggressive human neuroblastomas and to block the ability of TrkC to induce tumor cell death by a process known as apoptosis. In vitro analysis of human neuroblastoma cell lines indicated that both decreasing NT-3 expression and culturing in the presence of an antibody that blocked NT-3 binding to TrkC triggered the cells to undergo apoptosis. More importantly, blocking the NT-3/TrkC interaction inhibited tumor growth and metastasis in both a chick and a mouse xenograft model of neuroblastoma. The authors therefore suggest that disrupting the NT-3/TrkC interaction might provide a new approach to treating neuroblastoma, a form of cancer for which treatment options are currently limited.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Engineered SNIPRs transform CAR T-cell precision for safer cancer therapy