Arc radiotherapy treatments: Breakthrough in image-guided targeting of prostate tumors

Researchers in the US and Denmark have made a breakthrough in image-guided targeting of prostate tumors during arc radiotherapy treatments. In research partially supported by Varian Medical Systems (NYSE: VAR), physicists at Stanford University (California, USA) and Aarhus University Hospital (Aarhus, Denmark) have devised a method for 'real-time' tracking of the prostate motion using Varian's On-Board Imager® that shows promise in paving the way for advanced clinical treatments.

Arc therapy techniques such as Varian's RapidArc® technology are fast and efficient radiotherapy treatments delivered in a continuous rotation of the treatment machine around the patient. The position of the target must be updated in real-time in order for the dynamic multi-leaf collimator (DMLC) to track tumor motion. To date, a combination of MV portal images and kV orthogonal images have been tested to achieve this.

"Acquiring mega-voltage images is not ideal during RapidArc because the DMLC can block the view of the target during the treatment," says Per Rugaard Poulsen, lead author of the research. "The kV image beam is not obscured by the treatment DMLC making the markers visible from all treatment angles, unlike with the MV beam."  

To test the system, arc radiotherapy was delivered to a 'motion phantom' implanted with fiducial markers while continuously imaging with the kV beam. The target position was determined from these images, acquired from different projections during the arc, enabling the researchers to determine information about its 3D motion. This single imager based DMLC tracking system was shown to have sub-millimeter accuracy for most types of prostate motion. Precise alignment of the treatment beam with the tumor position is vital in radiotherapy treatments, as it can reduce the likelihood of complications due to the treatment.  

"The results confirm what has been seen in simulation studies and show that the method is very robust to experimental uncertainties," adds Per Rugaard Poulsen. "We've demonstrated that image-based tracking during arc radiotherapy can be done completely without MV images, which is an important step along the way to image-based tracking during arc treatment delivery."

Corey Zankowski, Varian's senior director of product management, said, "This research paves the way for real-time tracking of the DMLC with tumor motion during advanced arc therapy treatments, which should allow clinicians to reduce treatment margins around the tumor. Varian is committed to working closely with industry experts and researchers to enhance treatment accuracy with the goal of improving treatment outcomes."

SOURCE Varian Medical Systems, Inc.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI tools accelerate understanding of cardiac arrhythmia risks in lung cancer treatment