New nanotechnology biomedical therapy for joint injuries

Dr. Nirav A. Shah, MD, an orthopaedic sports medicine surgeon affiliated with Palos Community Hospital is the first to design a new nanotechnology biomedical therapy that promotes the growth of new, stronger cartilage to aid in the treatment of joint injuries.

"In conjunction with current minimally invasive surgical techniques, we have discovered that we can accelerate and enhance cartilage repair by using a synthetically developed biomaterial that is composed of amino acids that normally exist in humans," says Dr. Shah. "Translating this to a clinical solution may mean quicker return to athletic activities and work, and possibly prevent injuries from progressing to further cartilage degeneration – or end-stage arthritis.

Cartilage damage is typically associated with work and athletic injuries, and commonly occurs in conjunction with ACL tears and other ligament problems. Damaged cartilage can lead to joint pain, swelling, stiffness and loss of mobility, and eventually to osteoarthritis, a condition that currently affects 27 million people in the United States. With an aging and increasingly active population, that figure is expected to grow.

Unlike bone, cartilage does not grow back, so treatments to regenerate the tissue are critical. Current cartilage repair techniques oftentimes lead to Type I collagen, which resembles scar tissue, Dr. Shah explains. However, normal cartilage is composed of Type II collagen. The self-assembling peptide molecules used by Dr. Shah and his colleagues are able to more closely mimic the nano-structure of natural cartilage.

Dr. Shah's research at Northwestern University focused on cartilage damage to the knee, but other joints – including the shoulder, elbow, hip and ankle – could potentially benefit from the new therapy. "While still in pre-clinical trials, we are hopeful we could use this as an adjunct to current minimally invasive surgical techniques to improve and accelerate cartilage repair and regeneration," Dr. Shah says. "In the long run, we hope this also will slow and possibly decrease the incidence of arthritis after these types of injuries."

Dr. Shah anticipates that clinical trials may begin in as little as five years. In the meantime, he recommends that patients and primary care physicians have a low threshold for seeking out the expertise of an orthopaedic sports medicine specialist if there is concern for a cartilage injury.

"It's important for patients to present early on to an orthopaedic sports medicine physician with acute knee or other joint injuries so proper treatment, whether surgical or non-surgical, can begin immediately to maximize recovery and achieve the best possible outcomes," says Dr. Shah. "While these biological advancements are exciting, if safe and expedient intervention is not performed, future or early surgical treatments may not be as effective."

Dr. Shah and his colleagues' findings were reported by the Proceedings of the National Academy of Science on February 1, 2010 and are also published in the April 7, 2010 issue of the Journal of the American Medical Association. This significant contribution to orthopaedics also was awarded first place at the 2008 Orthopaedic Research & Education Foundation (OREF) Midwest Resident Research Symposium. OREF is the research and education arm of the American Orthopaedic Association, the American Association of Orthopaedic Surgeons, and the Orthopaedic Research Society.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New platform mimics immune interactions to boost cancer treatment