Researchers find Alzheimer's pathology to originate from Amyloid-Beta oligomers in the brain

Using a new mouse model of Alzheimer's disease, researchers at Mount Sinai School of Medicine have found that Alzheimer's pathology originates in Amyloid-Beta (Abeta) oligomers in the brain, rather than the amyloid plaques previously thought by many researchers to cause the disease.

The study, which was supported by the "Oligomer Research Consortium" of the Cure Alzheimer Fund and a MERIT Award from the Veterans Administration, appears in the journal Annals of Neurology.

"The buildup of amyloid plaques was described over 100 years ago and has received the bulk of the attention in Alzheimer's pathology," said lead author Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry, and Associate Director of the Alzheimer's Disease Research Center, Mount Sinai School of Medicine. "But there has been a longstanding debate over whether plaques are toxic, protective, or inert."

Several research groups had previously proposed that rather than plaques, floating clumps of amyloid (called oligomers) are the key components that impede brain cell function in Alzheimer's patients. To study this, the Mount Sinai team developed a mouse that forms only these oligomers, and never any plaques, throughout their lives.

The researchers found that the mice that never develop plaques were just as impaired by the disease as mice with both plaques and oligomers. Moreover, when a gene that converted oligomers into plaques was added to the mice, the mice were no more impaired than they had been before.

"These findings may enable the development of neuroimaging agents and drugs that visualize or detoxify oligomers," said Dr. Gandy. "New neuroimaging agents that could monitor changes in Abeta oligomer presence would be a major advance. Innovative neuroimaging agents that will allow visualization of brain oligomer accumulation, in tandem with careful clinical observations, could lead to breakthroughs in managing, slowing, stopping or even preventing Alzheimer's.

"This is especially important in light of research reported in March showing that 70 weeks of infusion of the Abeta immunotherapeutic Bapineuzumab- cleared away 25 percent of the Abeta plaque, yet no clinical benefit was evident."

Source: The Mount Sinai Hospital / Mount Sinai School of Medicine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Spatial aging clocks reveal how T cells and neural stem cells shape brain aging