International Stem Cell announces strategic alliance with TAP

International Stem Cell Corporation (OTCBB:ISCO), www.intlstemcell.com, announced today that it had entered into a strategic alliance with The Automation Partnership (TAP), www.automationpartnership.com, to automate and scale up the production of stem cell-derived human corneal tissue. The alliance has been formed to create instrumentation for ISCO and its partners and affiliates to produce development and commercial volumes of donor tissue for cornea transplantation and to reduce the use of animals and animal eyes in safety testing of drugs, chemicals and consumer products.

Cornea-related loss or reduction of vision can be caused by physical injury, infections and degenerative diseases. In cases where cornea replacement is indicated, current medical practice typically involves a one-two hour outpatient procedure under local anesthesia using full or partial corneas from healthy human cadavers. 10 million people worldwide are candidates for such treatment, primarily in Asia and Europe where there is significant quantitative and qualitative shortage of human cornea donation.

Global efforts are underway to transition from the use of live animals and excised animal eyes to test drugs, chemicals and consumer products. For example, Europe's Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) estimates a need to spend €270M and use 160,000 animals for eye safety testing alone to catch up with the back-log of insufficiently tested agents. In the US, the National Institutes of Health (NIH) and the Environmental Protection Agency (EPA) have launched a five-year program dedicated to finding new, non-animal technologies for toxicity testing of chemical compounds.

ISCO has discovered and filed for patents on a cell culture process for the synthesis of standardized, human, corneal tissue using stem cells. Histology, permeability and optical testing has demonstrated compatibility with natural corneas. Efforts are ongoing to further characterize this tissue and standardize and scale up its synthesis. Automation is necessary to produce sufficient, reproducible tissue for development and commercialization of the therapeutic and toxicity testing applications.

Brian Lundstrom, ISCO's President, says: "Given the substantial unmet therapeutic and toxicology testing needs for human corneal tissue, ISCO has embarked on a focused effort to advance this technology with international investors, eye clinics, and development and commercialization partners. After reviewing a range of potential cell culture automation companies, we are very pleased that TAP has agreed to contribute their over twenty years of experience towards this goal."

David Newble, TAP's CEO says: "TAP has successfully installed and supported over 160 automated cell culture systems worldwide and continues to design new and customize existing equipment for cell culture and other emerging life science applications. The opportunity to join forces with ISCO in the cornea tissue area will enable us to contribute solutions for clear biomedical needs while also creating new technology and knowhow that will be useful in other applications downstream."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers reveal cellular foundations of functional brain networks in humans