Scientists develop plastic antibody that works in bloodstream of living animal

Scientists are reporting the first evidence that a plastic antibody - an artificial version of the proteins produced by the body's immune system to recognize and fight infections and foreign substances - works in the bloodstream of a living animal. The discovery, they suggest in a report in the Journal of the American Chemical Society, is an advance toward medical use of simple plastic particles custom tailored to fight an array of troublesome "antigens." Those antigens include everything from disease-causing viruses and bacteria to the troublesome proteins that cause allergic reactions to plant pollen, house dust, certain foods, poison ivy, bee stings and other substances.

In the report, Kenneth Shea, Yu Hosino, and colleagues refer to previous research in which they developed a method for making plastic nanoparticles, barely 1/50,000th the width of a human hair, that mimic natural antibodies in their ability to latch onto an antigen. That antigen was melittin, the main toxin in bee venom. They make the antibody with molecular imprinting, a process similar to leaving a footprint in wet concrete. The scientists mixed melittin with small molecules called monomers, and then started a chemical reaction that links those building blocks into long chains, and makes them solidify. When the plastic dots hardened, the researchers leached the poison out. That left the nanoparticles with tiny toxin-shaped craters.

Their new research, together with Naoto Oku's group of the University Shizuoka Japan, established that the plastic melittin antibodies worked like natural antibodies. The scientists gave lab mice lethal injections of melittin, which breaks open and kills cells. Animals that then immediately received an injection of the melittin-targeting plastic antibody showed a significantly higher survival rate than those that did not receive the nanoparticles. Such nanoparticles could be fabricated for a variety of targets, Shea says. "This opens the door to serious consideration for these nanoparticles in all applications where antibodies are used," he adds.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough in immunology: AbMAP’s novel approach to antibody modeling