Physicists find clues to origin, evolution of wrinkles in thin sheets

As a sign of aging or in a suit, wrinkles are almost never welcome, but two papers in the current issue of Physical Review Letters offer some perspective on what determines their size and shape in soft materials.

Jiangshui Huang and colleagues at the University of Massachusetts, Amherst explore how wrinkles in a sheet adapt to an edge that prefers to be flat. They float a thin, rectangular film of common plastic (polystyrene) on water and compress the sheet along one direction to make folds. In the middle of the film, competition between gravity (which prefers shallow, frequent ripples) and the energy cost of bending the film (which favors longer, higher folds) determine the height and frequency of the folds. Near the edge, however, surface tension forces the film to lie flat. Huang et al. show the film interpolates between these two limits by smoothly tapering from larger, undulating folds in the center to higher frequency ripples at the edge.

In a related paper, Douglas Holmes and Alfred Crosby, also at the University of Massachusetts, Amherst quantify the transition from soft wrinkles to sharper folds. Similar to lifting a tissue from a box, they pull up an elastic sheet floating in water, and image the sheet as first wrinkles, and then folds, appear. They show that folds, like the edges of a neatly made bed, strain the sheet and smooth out the wrinkles.

The experiments offer complimentary insights into how defects, such as an edge or a fold, influence the presence of wrinkles and could prove helpful in understanding the formation of wrinkles in biological tissue.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Great ape museum specimens reveal secrets of DNA virus evolution