Buffer among metbolism pathways induces cancer suppressing gene mutation: Research

Eighty years ago, the medical establishment believed cancer was caused by a dysfunction of metabolism, but the idea went out of vogue. Now, scientists are again looking at metabolism and its role in cancer and other common diseases. Metabolism is a highly connected network of reactions that are arranged in parallel and interacting pathways. Such parallelism can mask how genes are linked with disease traits and make it difficult to treat conditions.

In a paper in the journal CHAOS, which is published by the American Institute of Physics, researchers at Harvard Medical School and Boston University analyzed ways to "break" the multiple parallel pathways of a metabolic network. The team applied a novel network algorithm to a published genome-scale model of human metabolism to design minimal "knockouts" for a wide variety of metabolic functions, such as phospholipid biosynthesis and the role of fumarase in suppressing human cancer.

The research suggests that the many pathways in the human metabolic network buffer each other to a striking degree, inducing "deep" epistasis -- the suppression of a mutation by one or more seemingly unrelated genes. Their results identify specific in vivo perturbation experiments that could confirm this deep parallelism in human metabolic pathways. "The results of our analysis could also be used to statistically probe complex relationships between genetic variation and disease," says co-author Marcin Imielinski.

source : American Institute of Physics

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers how cancer builds molecular bridges to evade the immune system