Scientists develop new synthetic material to grow stem cells

New synthetic surfaces overcome challenges posed by existing methods

Human pluripotent stem cells, which can become any other kind of body cell, hold great potential to treat a wide range of ailments, including Parkinson's disease, multiple sclerosis and spinal cord injuries. However, scientists who work with such cells have had trouble growing large enough quantities to perform experiments - in particular, to be used in human studies. Furthermore, most materials now used to grow human stem cells include cells or proteins that come from mice embryos, which help stimulate stem-cell growth but would likely cause an immune reaction if injected into a human patient.

To overcome those issues, MIT chemical engineers, materials scientists and biologists have devised a synthetic surface that includes no foreign animal material and allows stem cells to stay alive and continue reproducing themselves for at least three months. It's also the first synthetic material that allows single cells to form colonies of identical cells, which is necessary to identify cells with desired traits and has been difficult to achieve with existing materials.

The research team, led by Professors Robert Langer, Rudolf Jaenisch and Daniel G. Anderson, describes the new material in the Aug. 22 issue of Nature Materials. First authors of the paper are postdoctoral associates Ying Mei and Krishanu Saha.

Human stem cells can come from two sources - embryonic cells or body cells that have been reprogrammed to an immature state. That state, known as pluripotency, allows the cells to develop into any kind of specialized body cells.

It also allows the possibility of treating nearly any kind of disease that involves injuries to cells. Scientists could grow new neurons for patients with spinal cord injuries, for example, or new insulin-producing cells for people with type 1 diabetes.

To engineer such treatments, scientists would need to be able to grow stem cells in the lab for an extended period of time, manipulate their genes, and grow colonies of identical cells after they have been genetically modified. Current growth surfaces, consisting of a plastic dish coated with a layer of gelatin and then a layer of mouse cells or proteins, are notoriously inefficient, says Saha, who works in Jaenisch's lab at the Whitehead Institute for Biomedical Research.

"For therapeutics, you need millions and millions of cells," says Saha. "If we can make it easier for the cells to divide and grow, that will really help to get the number of cells you need to do all of the disease studies that people are excited about."

Previous studies had suggested that several chemical and physical properties of surfaces - including roughness, stiffness and affinity for water - might play a role in stem-cell growth. The researchers created about 500 polymers (long chains of repeating molecules) that varied in those traits, grew stem cells on them and analyzed each polymer's performance. After correlating surface characteristics with performance, they found that there was an optimal range of surface hydrophobicity (water-repelling behavior), but varying roughness and stiffness did not have much effect on cell growth.

They also adjusted the composition of the materials, including proteins embedded in the polymer. They found that the best polymers contained a high percentage of acrylates, a common ingredient in plastics, and were coated with a protein called vitronectin, which encourages cells to attach to surfaces.

Using their best-performing material, the researchers got stem cells (both embryonic and induced pluripotent) to continue growing and dividing for up to three months. They were also able to generate large quantities of cells - in the millions.

The MIT researchers hope to refine their knowledge to help them build materials suited to other types of cells, says Anderson, from the MIT Department of Chemical Engineering, the Harvard-MIT Division of Health Sciences and Technology, and the David H. Koch Institute for Integrative Cancer Research. "We want to better understand the interactions between the cell, the surface and the proteins, and define more clearly what it takes to get the cells to grow," he says.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma