Researches discover reducing tau protein level can prevent Αβ protein transport in Alzheimer’s disease

Tau reduction prevents amyloid proteins from disrupting transport of vital cargoes between brain cells

Amyloid beta (Αβ) proteins, widely thought to cause Alzheimer's disease (AD), block the transport of vital cargoes inside brain cells. Scientists at the Gladstone Institute of Neurological Disease (GIND) have discovered that reducing the level of another protein, tau, can prevent Aβ from causing such traffic jams.

Neurons in the brain are connected to many other neurons through long processes called axons. Their functions depend on the transport of diverse cargoes up and down these important pipelines. Particularly important among the cargoes are mitochondria, the energy factories of the cell, and proteins that support cell growth and survival. Aβ proteins, which build up to toxic levels in the brains of people with AD, impair the axonal transport of these cargoes.

"We previously showed that suppressing the protein tau can prevent Aβ from causing memory deficits and other abnormalities in mouse models of AD," explained Lennart Mucke, MD, GIND director and senior author of the study. "We wondered whether this striking rescue might be caused, at least in part, by improvements in axonal transport."

The scientists explored this possibility in mouse neurons grown in culture dishes. Neurons from normal mice or from mice lacking one or both tau genes were exposed to human Aβ proteins. The Aβ slowed down axonal transport of mitochondria and growth factor receptors, but only in neurons that produced tau and not in neurons that lacked tau. In the absence of the Aβ challenge, tau reduction had no effect on axonal transport.

"We are really excited about these results," said Keith Vossel, MD, lead author of the study. "Whether tau affects axonal transport or not has been a controversial issue, and nobody knew how to prevent Aβ from impairing this important function of neurons. Our study shows that tau reduction accomplishes this feat very effectively."

"Some treatments based on attacking Aβ have recently failed in clinical trials, and so, it is important to develop new strategies that could make the brain more resistant to Aβ and other AD-causing factors," said Dr. Mucke. "Tau reduction looks promising in this regard, although a lot more work needs to be done before such approaches can be explored in humans."

Comments

  1. Kent Karosen Kent Karosen United States says:

    We at the Fisher Center for Alzheimer’s Research Foundation are very proud to have funded this tremendous new finding of Dr. Paul Greengard. For the past 15 years, we have been proud to support the good work of Dr. Greengard and his internationally renowned team of scientists at The Fisher Center for Alzheimer’s Disease Research.  We would like to specifically congratulate Drs. He and Greengard for discovering this important protein.  Their latest research is a potential paradigm shift in how scientists and doctors around the world will attack Alzheimer’s.
    Kent L. Karosen
    President and CEO Fisher Center for Alzheimer’s Research Foundation  
    www.alzinfo.org

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Specific redox protein identified as a critical regulator of ferroptosis