Research may pave way to cure cystic fibrosis

Study recognized for significance and importance in the world's most common genetic disease

A University of Missouri researcher believes his latest work moves scientists closer to a cure for cystic fibrosis, one of the world's most common fatal genetic diseases.

The Journal of Biological Chemistry has published findings by Tzyh-Chang Hwang, a professor in the School of Medicine's Department of Medical Pharmacology and Physiology and the Dalton Cardiovascular Research Center. The publication has been recognized as the "paper of the week" for the journal, meaning Hwang's work is considered to be in the top 1 percent of papers reviewed annually in terms of significance and overall importance.

Hwang's work focuses on the two most common genetic mutations among approximately 1,500 mutations found in patients with cystic fibrosis. These two mutations cause specific chloride channels in the cell, known as the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channels, to malfunction. This ultimately leads to repeated pneumonia, the primary cause of most deaths associated with cystic fibrosis.

"The normal function of a cell is to pass chloride ions across the cell membrane at a very fast speed," Hwang said. "We know some signaling molecules elicit this reaction, much like a hand signals an automatic water faucet to dispense water. But in the case of cystic fibrosis, that signal is no longer detected by the mutated channel protein. Through some mechanisms we still don't quite understand, malfunction of this channel protein eventually leads to bacterial infection in the lung, which is believed to be responsible for the most severe symptoms of cystic fibrosis."

The most recent study found that manipulating the sensor of the channel protein can significantly rectify the malfunction of the mutated channel, thus opening the door to a drug design that may eventually be a "real cure," Hwang said.

"We could help a lot of patients if we can utilize the power of computer simulations and structure-based drug design to discover new therapeutical reagents for cystic fibrosis, but it's very expensive to do this kind of research in an academic institute," Hwang said.

Source: University of Missouri-Columbia

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New long COVID index highlights five symptom subtypes