StemCells seeks Swiss authorization to conduct human neural stem cells clinical trial in chronic spinal cord injury

StemCells, Inc. (Nasdaq:STEM) announced today that is has filed an application with Swissmedic, the Swiss regulatory agency for therapeutic products, to conduct a clinical trial in Switzerland of the Company's HuCNS-SC® purified human neural stem cells in chronic spinal cord injury patients. If authorized, the study would enroll patients who are three to 12 months post-injury.

"With this filing we have taken a tangible step to broaden the clinical development of our HuCNS-SC product candidate beyond the brain and into the spinal cord," said Martin McGlynn, President and CEO of StemCells, Inc. "This exciting initiative is supported by extensive preclinical research demonstrating the ability of our proprietary cells to restore lost motor function when transplanted in the chronic spinal cord injury setting. The prospect of extending the treatment window to months or longer following injury would mean that a much larger population of injured patients could potentially benefit from such an approach."

Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc., added, "Switzerland is home to some of the leading clinicians and medical centers in the world engaged in the treatment and rehabilitation of spinal cord injury patients, which makes it an excellent setting for this type of trial. While we have yet to secure Swissmedic authorization to initiate the study, we are pleased to have already received approval from the respective ethics committees at our anticipated trial site and the local Canton, both of which are prerequisites for making a submission of this kind in Switzerland."

The results of numerous collaborative preclinical studies with researchers at the University of California, Irvine (UCI) demonstrate the significant therapeutic potential of the Company's human neural stem cells for the treatment of spinal cord injury. Data published in several peer-reviewed journals show that the cells engraft, migrate along the spinal cord to the point of injury, and then differentiate into neurons and specialized cells called oligodendrocytes that create the insulation (myelin) necessary for proper transmission of nerve impulses from the brain to below the level of injury. When transplanted in spinal cord-injured mice at both sub-acute and chronic injury time points, the cells have been shown to form protective myelin sheaths around damaged nerve axons and enable a significant and persistent recovery of walking ability. 

Aileen Anderson, Ph.D., Associate Professor in the Departments of Physical Medicine and Rehabilitation, and Anatomy and Neurobiology at UCI, commented, "The preclinical data we have seen to date provide a compelling rationale for advancing these neural stem cells into clinical testing for chronic spinal cord injury. Restoring some degree of function for patients at later time points beyond the acute injury phase could have a transformative impact on the field as there are no effective treatment options for them today. The demonstrated ability of these cells to repair an injured spinal cord and promote functional motor recovery in animals could translate into improved quality of life for individuals living with paralysis, and I am excited to see StemCells take this important next step toward what I hope will one day become a viable therapy for a broad population of spinal cord-injured patients."  

Source:

 StemCells, Inc.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How gut microbiome and fiber diversity shape chronic disease outcomes