New findings on folic acid supplementation reveal causes of low birth weight

Groundbreaking work by a team of UK scientists has identified, for the first time, a link between changes in the DNA of newborn babies, folic acid supplementation during pregnancy, and birth weight.

This state-of-the-art 'epigenetic' study, from scientists at Keele and Nottingham Universities together with doctors at University Hospital of North Staffordshire and Derby Children's Hospital, led by Professor William Farrell, Professor of Human Genomics, Institute for Science and Technology in Medicine at the University of Keele, and funded by the World Cancer Research Fund, showed that the levels of a critical metabolite of folic acid, homocysteine, in the blood of newborn babies is linked to modifications of their DNA (DNA methylation) in key genes and that such modifications might be used to predict birth weight.

Supplementation with the vitamin, folic acid during pregnancy is known to reduce the risk of neural tube defects such as spina bifida. It also protects against low birth weight, which has numerous short- and long-term consequences. It has been suggested that folic acid, though its metabolism to chemicals such as homocysteine, might secure these clinical effects via DNA methylation.

The Fetal Epigenomics Group (http://www.keele.ac.uk/research/istm/FEG/index.html), comprising; Professor Anthony Fryer, Keele Professor of Clinical Biochemistry, University Research Institute of Science and Technology in Medicine/University Hospital of North Staffordshire, Dr Richard Emes, Associate Professor in Bioinformatics, School of Veterinary Medicine and Science; University of Nottingham, Dr Khaled Ismail, Consultant and Senior Lecturer in Obstetrics and Gynaecology, Keele Research Institute for Science and Technology in Medicine/University Hospital of North Staffordshire, Dr Kim Haworth, Keele Research Institute of Science and Technology in Medicine, Dr Charles Mein, Barts and the London School of Medicine and Dentistry; Genome Centre, Dr  William Carroll, Consultant Paediatrician, Derbyshire Children's Hospital, and Professor Farrell, examined the relationship between folic acid supplementation and its metabolites on DNA methylation in human blood from the umbilical cord, using a state-of-the-art 'microarray' techniques which simultaneously examines methylation at 27,578 sites in the DNA.

Professor Farrell said: "It has been known for many years that folic acid supplementation is essential for women during pregnancy to reduce the risk of neural tube defects and low birth weight delivery. However, we had little idea as to how this worked. This study is the first to suggest that methylation of particular genes in the baby's DNA may be the key to unlocking the secret of the action of folic acid. "

"Now we have identified which genes might be the link between folic acid and birth weight, we have opened the door to research that may allow doctors to predict the likelihood of low birth weight with greater certainty. Furthermore, it sheds light on the underlying causes of low birth weight and offers the potential to intervene earlier to prevent poor pregnancy outcomes such as premature delivery and pregnancy loss."

The work, some of which was published recently in the scientific journal 'Epigenetics', illustrates the potential of DNA methylation 'microarray' technology to identify a new generation of clinical markers that will have a major impact, not only on the development of new therapeutic agents, but also on the way we manage a wide range of medical scenarios. 

Source: University Hospital of North Staffordshire

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Heat exposure significantly heightens risks for maternal and newborn health