HOXB7 gene raises tamoxifen resistance in women with early-stage breast cancer

A gene target for drug resistance, a triple-drug cocktail for triple negative breast cancer, and patients' risk for carpal tunnel syndrome are among study highlights scheduled to be presented by Johns Hopkins Kimmel Cancer Center scientists during the 33rd Annual CTRC-AACR San Antonio Breast Cancer Symposium, held Dec. 8-12. The information is embargoed for the time of presentation at the symposium.

HOXB7 GENE PROMOTES TAMOXIFEN RESISTANCE

Many postmenopausal women with early-stage breast cancers who initially respond well to tamoxifen become resistant to the drug over time and develop recurrent tumors. Johns Hopkins Kimmel Cancer Center researchers have found that a gene called HOXB7 may be the culprit in tamoxifen resistance.

Taken by mouth, tamoxifen is used at every stage of breast cancer to treat existing tumors and prevent new ones from developing. The drug works only in women whose tumor cells have a protein, called the estrogen receptor, which binds to the estrogen hormone. Tamoxifen binds to this estrogen receptor and blocks estrogen's effect on fueling cancer cells.

In experiments on cancer cells, the scientists found that when the HOXB7 gene is overexpressed, as occurs in many breast cancers, tumors cells became resistant to tamoxifen. Overexpression of HOXB7 results in proteins that interact with a series of other estrogen-activated genes and proteins, including the HER2 gene, known to make breast cancers aggressive. When the scientists knocked out the HOXB7 gene in one group of breast cancer cells, HER2 activation decreased and the cells became more responsive to tamoxifen. The scientists then showed how the HOXB7-HER2 interaction works.

"HOXB7 appears crucial in orchestrating estrogen receptors, HER2 and other receptors that promote aggressive tumor growth in breast cancer cells," says senior author Saraswati Sukumar, PhD, professor of oncology and co-director of the Breast Cancer Program at Johns Hopkins. "Dialing down expression of the HOXB7 gene could stave off tamoxifen resistance."

Though it's not yet evident how to shut down HOXB7, Sukumar says that oncologists could potentially use the drug Herceptin to kill tumors in patients whose HER2 expression increases.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough study unravels molecular subtypes of breast cancer