NIAID renews funding of PRIME to develop mathematical models to study influenza infection

Mount Sinai School of Medicine today announced that the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), has renewed funding of the Program for Research on Immune Modeling and Experimentation (PRIME). This program seeks to develop easy-to-use, predictive mathematical models to better understand patterns of infection among individuals affected by the H1N1 and 1918 influenza viruses and other related viruses.

The renewed contract provides an additional $17.2 million over five years to the initiative, following an initial contract of $16.8 million, bringing the total funding for PRIME to $34 million. Mount Sinai is the primary research site for PRIME, leading five other institutions and organizations around the world.

As part of PRIME, researchers at Mount Sinai School of Medicine use data-based models to simulate the response of human dendritic cells, a type of immune cell, to influenza viruses. The PRIME team will test and refine a cutting-edge informatics platform that replaces paper recordkeeping and transmits results to a centralized database sponsored by NIAID. This database will help scientists more effectively design their experiments and make better use of available data. Under the renewed contract, Mount Sinai researchers will perform large-scale experiments to validate mathematical models and test their predictions, with the goal of helping scientists better understand the immune response to these viruses.

"The number of factors contributing to human response to a virus is overwhelming, far too many for scientists to test through traditional experiments," said Stuart C. Sealfon, MD, Glickenhaus Professor and Chair of the Department of Neurology, Director of the Center for Genomics, Proteomics and Bioinformatics, Director of the Center for Translational Systems Biology, Professor of Neurobiology, and Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine. "Using a computational approach, we can better understand what makes these viruses tick, allowing scientists to refer to a centralized database to better direct their experiments."

During the first five years of the contract, the PRIME team made several advances in working with immunologists on using these tools. With the renewal, the research team will facilitate the use of computational approaches by experimentalists to elucidate the molecular mechanism of action of virus infection.

"The PRIME team is at the forefront of a major transition in medical research to leverage the power of computational biology to help design experiments," said Dr. Sealfon. "This approach can make these experiments much more efficient and accelerate scientific discovery, which is especially critical in studying severe pandemics."

Source: The Mount Sinai Hospital / Mount Sinai School of Medicine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research identifies respiratory transmission potential of H5N1 virus