Human model of rare genetic disease reveals new clues to aging process

Scientists from A*STAR's Institute of Medical Biology (IMB) in Singapore and the University of Hong Kong's Department of Medicine have produced the world's first human cell model of progeria, a disease resulting in severe premature ageing in one in four to eight million children worldwide. This model has allowed them to make new discoveries concerning the mechanism by which progeria works. Their findings were published this month in the prestigious scientific journal, Cell Stem Cell.

Hutchinson-Gilford Progeria Syndrome, also known as progeria, is caused by a mutation in the gene encoding for the protein lamin A, an important component of the membrane surrounding a cell's nucleus. The mutation results in a truncated form of lamin A called progerin, which in turn causes misshapen cell nuclei and DNA damage. Children with progeria suffer symptoms of premature ageing, including growth retardation, baldness, and atherosclerosis (hardened arteries), and all die in their early teens from either heart attack or stroke.

Led by IMB's Profs Alan Colman and Colin Stewart, the team used a novel technique of deriving induced pluripotent stem (iPS) cells from cells of human progeria patients . This human progeria model allows the group to trace and analyse the distinctive characteristics of progeria as it progresses in human cells. Previously, only mouse models of the disease were available.

Said Prof Colman, "While mouse models of progeria have been informative, no one mouse model recapitulates all the symptoms seen in humans. Our human progeria model allows us to examine the pathology of the disease at a much closer resolution than previously possible."

The researchers used their iPS cells to identify two types of cells - mesenchymal stem cells (MSCs) and vascular smooth muscle cells (VSMCs) - that were particularly adversely affected by progeria. This means that a young patient with progeria would typically have fewer MSCs and VSMCs than other children. MSCs were found to be very sensitive to a low oxygen environment and their losses could delay renewal of the various tissues they gave rise to, thus exacerbating the patient's symptoms of ageing. The same effect on VSMCs could explain why their number was reduced in the patient's heart vessels.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Key kinase involved in cell division linked to abnormal blood vessel growth in genetic disorder