Researchers study role of acetylation in Alzheimer's disease

New biomarker for tau-related brain disorders?

Researchers at the University of Pennsylvania School of Medicine have determined that a well-known chemical process called acetylation has a previously unrecognized association with one of the biological processes associated with Alzheimer's disease and related disorders. The findings were published in the latest issue of Nature Communications.

Tau is one of the primary disease proteins associated with a suite of neurodegenerative diseases. Tau proteins are expressed primarily in the central nervous system where they help with the assembly and stability of microtubules, protein structures that are the backbone of the nerve-cell communication system.

"Acetylation was only detected in diseased brain tissue from patients with Alzheimer's disease or frontotemporal degeneration, suggesting it may have a role in tau transformation linked to disease onset and progression," says senior author Virginia M.-Y. Lee, PhD, director of Penn's Center for Neurodegenerative Disease Research. "This suggests that one type of acetylation is a potential target for drug discovery and biomarker development for Alzheimer's and related tauopathies."

The researchers demonstrated that tau acetylation led to a loss of one of its major functions - to promote microtubule assembly, in addition to gaining a toxic function, pathological tau aggregation. Mass spectrometry analysis identified specific acetylation sites in the tau protein sequence that overlapped with known microtubule binding sequences, so acetylation may also play a role in faulty binding of tau to microtubules.

How normal tau becomes disengaged from microtubules to form disease-related clumps remains unknown. This study shows that acetylation is most likely another chemical modification implicated in neurodegenerative disorders to be explored as a potential way to detect and fight brain disease.

According to Lee, the next steps to follow up on this discovery are to pursue basic research into the mechanisms underlying this pathological acetylation of tau and its role in neurodegeneration in Alzheimer's disease and related tauopathies. In addition, she noted that "Our highest priority will be to find ways to translate these findings into better diagnostics and therapeutics for patients with Alzheimer's disease or frontotemporal degeneration."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The role of geroscience in understanding Alzheimer’s Disease