Navigator-3 gene plays a key role in liver development

Scientists of the Max Delbr-ck Center for Molecular Medicine (MDC) Berlin-Buch (Germany) have demonstrated for the first time that a gene regulating neuronal cell migration during embryogenesis also plays a role in the development of the liver. Using zebrafish as a model organism, Dr. Christian Klein and Professor Ferdinand le Noble showed that the gene navigator-3 (abbreviated nav3a) regulates liver organogenesis. If nav3a is missing, the liver cannot develop (Development 2011, doi:10.1242/dev.056861). "Moreover, first evidence indicates," Dr. Klein said, "that the expression of this gene is dysregulated during the pathogenesis of liver diseases in humans."

Scientists have known for some time that in the early phase of embryogenesis, neural guidance genes also play a role in the development of the vascular system. This is the focus of the research group "Angiogenesis and Cardiovascular Pathology" led by Professor le Noble. Dr. Klein, a member of this research group, discovered during his study of zebrafish that the navigator gene nav3a is also crucial for liver organogenesis.

In the zebrafish embryo, the navigator gene is active in the precursor cells of the liver. If it is missing, the liver cannot develop. The navigator gene, as its name implies, guides the cells in their migration. In a further step the researchers showed that nav3a optimizes cytoskeletal modulation in the cells, precisely orchestrating the migration of the cells to their determined destination, at which they subsequently form the liver. The production of the navigator gene is initiated by the signaling molecule wnt2bb, which belongs to a gene family that has key functions in organogenesis.

First evidence that dysregulated expression of nav3a is involved in liver diseases

The study of developmental processes in zebrafish embryos is also important for research into human diseases. According to Dr. Klein there are first indications "that dysregulated expression of nav3a is involved in the pathogenesis of liver cancer and liver cirrhosis in humans. Nav3a could thus be an important therapeutic target."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers a previously unknown genetic link to autism spectrum disorder