Modified vitamin A drug may help prevent age-related macular degeneration

Slowing down the aggregation or "clumping" of vitamin A in the eye may help prevent vision loss caused by macular degeneration, research from Columbia University Medical Center has found.

Rather than changing the way the eye processes vitamin A, a team of researchers led by Ilyas Washington, a professor in the department of ophthalmology at Columbia's Harkness Eye Institute, decided to focus on changing the structure of vitamin A itself. In turn, Dr. Washington and his lab have taken a novel step toward treating age-related macular degeneration (AMD), a top cause of untreatable blindness - and Stargardt's disease, the most common cause of juvenile macular degeneration.

During the sequence of events that enables vision, vitamin A undergoes a series of chemical transformations in the eye. These processes sometimes allow vitamin A to react with another molecule of vitamin A to form clumpy deposits, or what are known as "vitamin A dimers." Macular degeneration has long been thought to be associated with the formation of these dimers in the eye.

The concentrations of these dimers are higher in the eyes of the elderly and in those with certain inherited eye diseases. Vitamin A dimers are also found together with insoluble pigment granules called lipofuscin. In eye diseases such as dry-AMD, the accumulation of vitamin A dimers and these granules is thought to happen over decades. But in genetic diseases such as Stargardt's disease, this process can happen much faster, leading to early vision loss as early as age 8.

"Researchers have tried a different approach to preventing the formation of vitamin A dimers by modifying the processing of vitamin A by the eye," Dr. Washington says. "But these modifications seem to have inhibited vision and caused side effects."

In animal model studies, Dr. Washington's lab has set about synthesizing a modified vitamin A drug incorporating the hydrogen isotope deuterium rather than protonium (the more abundant isotope of hydrogen) at select positions. Dr. Washington and his lab hypothesized that these modifications would make the bond involved in dimerization harder to break, which would slow dimerization. By feeding this new vitamin A drug to healthy mice, they were able to reduce the amount of vitamin A dimers without any observed side effects, said Dr. Washington, the Michael Jaharis Assistant Professor of Ophthalmic Sciences at Columbia.

When given to mice with the same genetic defect as humans with Stargardt's disease, which usually experience early vision loss, the modified vitamin A resulted in fewer vitamin A dimers, better overall ocular health and improved vision. Importantly, they also observed that the modified vitamin A behaved exactly as normal vitamin A does in all other aspects, making it an attractive potential therapy for preventing blindness in humans.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Integrating traditional medicines with modern nutrition for holistic health