Stem cell technology corrects genetic defect in rare blinding disorder

Researchers have used cutting-edge stem cell technology to correct a genetic defect present in a rare blinding disorder, another step on a promising path that may one day lead to therapies to reverse blindness caused by common retinal diseases such as macular degeneration and retinitis pigmentosa which affect millions of individuals.

In a study appearing in an advance online publication of the journal Stem Cells on June 15, 2011, investigators used recently developed technology to generate induced pluripotent stem (iPS) cells from a human patient with an uncommon inherited eye disease known as gyrate atrophy. This disorder affects retinal pigment epithelium (RPE) cells, the cells critical to the support of the retina's photoreceptor cells, which function in the transmission of messages from the retina to parts of the brain that interpret images.

"When we generate iPS cells, correct the gene defect that is responsible for this disease, and guide these stem cells to become RPE cells, these RPE cells functioned normally. This is exciting because it demonstrates we can fix something that is out of order. It also supports our belief that in the future, one might be able to use this approach for replacement of cells lost or malfunctioning due to other more common diseases of the retina," said lead study author cell biologist Jason Meyer, Ph.D., assistant professor of biology in the School of Science at Indiana University-Purdue University Indianapolis.

Macular degeneration is the most common cause of blindness, affecting an estimated 25-30 million people worldwide. One and a half million people worldwide are affected by retinitis pigmentosa.

Because iPS cells can be derived from the specific patient who needs them, use of these cells may avoid the problem of transplant rejection. In the study, vitamin B-6 also was used to treat the damaged RPE cells producing healthy cells that functioned normally. The retina is a relatively easily accessible part of the central nervous system, which makes it an attractive target for correction with iPS cells. Researchers are hopeful that once the gene defect responsible for a blinding disorder is corrected in iPS cells, these cells may be able to restore vision.

Comments

  1. Mark Wade Mark Wade United States says:

    Just wondering when they will start to do this surgeries on people to see if it works.  I have retinis pigmentosa and would love to try this procedure if it works.  thank you.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease