Genetically engineered pigs may help overcome donor organ shortage

New research published in the Journal of Leukocyte Biology suggests that overexpressing the human programmed death ligand-1 molecule in pig artery endothelial cells induces human immune tolerance

A sizzling genetic discovery by Chinese scientists may one day allow pig tissue to be transplanted successfully into humans. Their research presented in the Journal of Leukocyte Biology (http://www.jleukbio.org) represents a major step forward toward filling the shortage of vital organs for human transplantation. At the core of their work, they showed that altering or overexpressing the human programmed death ligand-1 (PD-L1) molecule in the endothelial cells of pig arteries reduces the conditions that lead to rejection. This strongly suggests that humans could receive altered porcine organs with fewer complications.

"Genetically engineered pigs may someday overcome the severe donor organ shortage, and save human lives," said Qing Ding, Ph.D., co-study author from the Shanghai Institute of Immunology at the Shanghai Jiaotong University School of Medicine in Shanghai, China.

To make the discovery, scientists conducted experiments using two groups of pig vascular endothelial cells. The first group was genetically engineered to express human PD-L1, while the second group was normal. When both sets of cells were exposed to human lymphocytes, lower rejection response occurred in the group with the altered gene, while higher rejection responses were seen in the normal cells. Study results suggest that human PD-L1 could be used as a novel therapeutic agent to enhance tolerance of xenotransplants and also supports the possibility of using human PD-L1 transgenic pigs as xenotransplant donors. Using this type of genetic engineering technique could potentially overcome current challenges related to successful pig/human transplant rejection.

"Xenotransplantation has the potential to fill a huge gap between the number of available human donor tissue and number of needy recipients," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology, "but our understanding of the pathways that might enhance the acceptance and physiological function of organs from animals such as pigs remains incomplete. The study by Dr. Ding and his colleagues is a very substantial step forward in defining a key immunoregulatory pathway that could be targeted in this setting."

Source: Federation of American Societies for Experimental Biology

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New nanopore-based tool enables single molecule disease detection