Scientists discover nanoparticles can disrupt intracellular transport pathways

Scientists at the Centre of Cancer Biomedicine at the Norwegian Radium Hospital are the first to show that uptake and accumulation of nanoparticles in cells can disrupt important intracellular transport pathways.

The researchers discovered that the nanoparticles interrupt the transport of vital substances in and out of a cell, causing undesirable changes in the cell's physiology and disrupting normal cell functioning.

The likely explanation is that nanoparticles of a certian size either cannot enter vi the the very thin tubes in the endosomes or they lodge inside and plug it up."

New medicines containing nanoparticles are proven to have clear curative value, but complications can sometimes arise. Researchers at the Norwegian Radium Hospital in Oslo have shown how nanoparticles can interfere with the transport of vital substances in cells.

Cells affected  

Basic research on cell cultures, such as that carried out at the Norwegian Radium Hospital, clearly demonstrates that nanoparticles affect the cells.

After four years of experimentation Senior Scientist Tore-Geir Iversen and his colleagues are zeroing in on how nanoparticles behave in cells. Dr Iversen's group is the first to show that uptake and accumulation of nanoparticles in cells can disrupt important intracellular transport pathways.

The project has received funding under two of the Research Council of Norway's Large-scale Programmes: Functional Genomics in Norway (FUGE) and Nanotechnology and New Materials (NANOMAT). The findings were first published in the US journal Nano Letters.

The method
Researchers working on the project have studied nanoparticles 30-100 nanometres in diameter, a typical size used for delivering medicines and DNA into cells.

The nanoparticles were dyed so as to fluoresce (light up) when irradiated by a laser. By dying various particles with different fluorescent substances and irradiating them with different laser wavelengths, the researchers were able to locate the various particles within cells using a microscope.

One much-used particle type is fluorescent quantum dots, which light up when irradiated by light of wavelengths approaching the ultraviolet range. Another type is iron oxide particles, which bind to fluorescent substances so that researchers can study their uptake and where they are transported within cells. Iron oxide particles have been used in magnetic resonance imaging (MRI) diagnostics for 20 years.

The results 

Trials have shown that a protein that transports iron into a cell is taken up in the usual way even when bound to a nanoparticle. However, while 99% of a protein not bound to a nanoparticle will make its way out of the cell and can be recycled, a nanoparticle-bound protein remains in the cell.

There it accumulates in the endosomes, which have an important function in the cell's internal transport system. Endosomes are bubble-like compartments encased in a membraneThus the researchers discovered that the nanoparticles interrupt the transport of vital substances in and out of a cell, causing undesirable changes in the cell's physiology and disrupting normal cell functioning.

"The likely explanation," says Dr Iversen, "is that the protein has to enter through very thin tubes (called tubules) in the endosomes. Nanoparticles of the size we are researching either cannot enter the tubule or they lodge inside and plug it up."

This is critical knowledge when it comes to designing future particles.

Cautions against jumping to conclusions

The Norwegian research confirms that there are no shortcuts to developing a medicine that targets diseased tissue. Even when a protein itself is targeted and has a positive effect, that same protein bound to a nanoparticle may be less effective - or perhaps even harmful.

"We find it frustrating that a number of international scientific articles confidently conclude, on poorly verified grounds, that nanoparticles effectively transport medicines to the nucleus," laments Dr Iversen. He and his colleagues recently published a review article in the journals Nanomedicine and Nano Today that details their criticisms of such claims.

"Hopefully our reviews will lead to higher quality in future studies of uptake in the cells."

Uncertain risks

Tore-Geir Iversen is concerned that the pharmaceutical industry is rushing its product development.

If a nanomedicine is used to extend the life of a patient with terminal cancer, then the accumulation of nanoparticles might be insignificant, he reasons. But when a medicine is developed to treat a chronic disorder, so that patients will take that medicine over years, then pharmaceutical companies should have to demonstrate that their medicine is fully degraded and excreted from the body.

The challenge is that even clinical studies carried out on patients with chronic diseases will not provide the whole truth. The negative effects of a nanomedicine may not show up in a short-term study, but patients who use that medicine over many years to fight a chronic disorder may end up exhibiting an over-occurrence of certain cancer types due to the nanoparticles being incompletely excreted, disrupting transport in the body's cells.

"We shouldn't skip over understanding basic cell biology and go straight to clinical trials or animal trials," cautions Dr Iversen.

Research ahead

Next, the Norwegian Radium Hospital researchers want to find out whether nanoparticles smaller than 30 nanometres in diameter will navigate the transport system any better.

Furthermore, in close cooperation with materials researchers they aim at creating particles with sizes and surface compositions that allow them to stably circulate in the blood stream and interact specifically with their target cells yet ensures they can be broken down within the cells.
The cell biologists will also collaborate with immunologists before moving on to animal trials.

How nanoparticles are transported into cells

Nanoparticles, proteins and other macromolecules are taken up in the body's cells via various mechanisms. The nanoparticles are first encapsulated in fatty bubbles, called vesicles, which form on the cell surface.

These vesicles merge with larger vesicles known as sorting endosomes, which can then mature into multivesicular bodies (MVBs). These MVBs, in turn, merge with lysosomes, where proteins and other macromolecules are broken down by proteases and other enzymes. Nanoparticles can be transported out of the cell via either sorting endosomes or recycling endosomes.

Source:

Norwegian Radium Hospital

Comments

  1. Walter Mrak Walter Mrak Canada says:

    This quality could be exploited in the killing of cancer cells.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Innovative nanodiscs offer less invasive method for deep brain stimulation