Scientists purify PARP protein that shows promise against breast, ovarian cancers

CANCER RESEARCH UK scientists have succeeded in purifying a protein found in bacteria that could reveal new drug targets for inherited breast and ovarian cancers - and other cancers linked to DNA repair faults. The study is published in the journal Nature today.

The team, based at Cancer Research UK's Paterson Institute in Manchester, are the first to decipher the structure of a protein called PARG - which plays an important role in DNA repair and acts in the same pathway as PARP.

PARP inhibitors have been showing great promise in clinical trials for patients with breast, ovarian and prostate cancers caused by mutations in genes called BRCA1 and BRCA2. They work by blocking the action of PARP - a protein that chemically tags areas of DNA damage to highlight them to the cell's DNA repair machinery.

PARG removes these chemical tags after the DNA damage has been repaired. So the researchers believe that, similar to PARP inhibitors, drugs designed to block the action of PARG could be effective in treating cancer.

Lead author Dr Ivan Ahel, based at Cancer Research UK's Paterson Institute in Manchester, said: "For decades scientists have wanted to find out the structure of PARG, but its large size makes it very hard to produce in the lab. By studying a smaller version of PARG found in bacteria, we've been able to create a '3D map' that researchers can use to understand more about how PARG works. The next step will be to investigate whether drugs that block its activity might be an effective way of treating cancers driven by faults in DNA repair genes."

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: "This discovery shows that bacteria and humans share similarities in the cellular machinery they use to repair damaged DNA. Importantly, knowing the structure of PARG in bacteria could help researchers design targeted treatments that are also effective in cancer patients. We hope this will lead to further treatment options for patients with a range of cancers in the future."

Source: Cancer Research UK

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover key protein that helps cancer cells evade CAR T cell therapy