Researchers identify 29 DNA sequence variations linked with blood pressure

A study involving more than 200,000 people worldwide has identified 29 DNA sequence variations in locations across the human genome that influence blood pressure. These genes, whose sequence changes are associated with alterations in blood pressure and are linked to heart disease and stroke, were found with the help of decades' worth of population data that were pooled and analyzed by a large international consortium, including Johns Hopkins researchers.

Among the findings was evidence that the same common genetic variants associated with hypertension in European populations also are frequently found in individuals of Asian and African ancestry, according to the report that appears September 11 in Nature.

"A genetic risk score that adds up the effects of all of these variants shows that the more of these variants an individual has, the greater are his or her chances of having hypertension, left ventricular wall thickness, stroke and coronary artery disease," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics and molecular biology and genetics at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, and one of the lead authors.

The individuals whose genomes were analyzed for this study had their blood pressures recorded when they originally entered other long-term cardiovascular research studies, and scientists used these measures to assess the predictive value of the genes and blood pressures in terms of the subjects' current cardiovascular status.

This genome-wide association study focused on systolic and diastolic blood pressures: measures of the maximum and minimum pressures exerted on the arteries. However, in a related genome-wide investigation reported September 11 in Nature Genetics, the same scientists found an additional six locations across the genome where variants affect blood pressure by focusing on two other relevant measures: pulse pressure (the difference between systolic and diastolic blood pressure) and mean arterial pressure (a weighted average of systolic and diastolic blood pressure). The group conducted a genome-wide association meta-analysis of pulse pressure and mean arterial pressure in 74,064 individuals of European ancestry from 35 studies and then followed up the results in 48,607 additional individuals.

"It's like using four different cops to find the same culprit," Chakravarti says. "The more ways we search for blood pressure genes, the better our ability to understand hypertension, whose affects are not uni-causal."

For the billion-plus people worldwide with hypertension, even small elevations in blood pressure are associated with increased risk of cardiovascular disease. Although it's generally known that hypertension has a familial component, the genetic regulatory mechanisms of blood pressure have been challenging to pin down so far, Chakravarti says, citing similar genetic studies three years ago that failed to detect any genes. He credits the recent spate of genetic discoveries - more than 300 genes for cardiovascular diseases have been identified in just the last few years - to the collective analyses of long-term prospective research efforts such as the pioneering Framingham Heart Study, begun in 1948, the Cardiovascular Heath Study, started in 1989, and the Atherosclerosis Risk in Communities (ARIC) study, started in 1987.

"Too often, people look at these studies that have a long provenance and wonder what is it doing for them today," says Chakravarti, who compares the studies to a retirement account. "Researchers visit them time and time again. Without them, this feat of genetic studies would be impossible."

Each genome-wide association study, often referred to as GWAS, reported what effects were observed at which locations on the genome in a scan of single nucleotide polymorphisms (SNPs) throughout the genome. Pronounced snips, SNPs are sites where a single letter in the DNA code is variable between humans.

"Your blood pressure is a function of these genes we just identified as well as perhaps a hundred others we haven't found yet," says Chakravarti. "By revealing the genetic architecture of blood pressure, both studies will help us to understand the biology of cardiovascular diseases and stroke, and, eventually, may lead to better therapies."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blood count stability reveals new pathways to personalized care