Scientists identify proteasome phosphatase that appears to regulate removal of damaged proteins

A study by scientists at the University of California, San Diego and UC Irvine has identified an enzyme called a proteasome phosphatase that appears to regulate removal of damaged proteins from a cell. The understanding of how this process works could have important implications for numerous diseases, including cancer and Parkinson's disease.

The study - led by Jack E. Dixon, PhD, professor of Pharmacology, Cellular & Molecular Medicine, and Chemistry/Biochemistry at the University of California, San Diego and Vice President and chief scientific officer of the Howard Hughes Medical Institute - appears this week in the online edition of Proceedings of the National Academy of Sciences (PNAS).

Proteasomes are very large protein complexes found in all eukaryote cells, in archaea (a group of single-celled microorganisms) and in some bacteria. These basket-like chambers are essential for removing damaged or misfolded proteins from the cell. The inability of a defective proteasome to destroy misfolded or damaged proteins can be cataclysmic.

Scientists have known for some time that the proteasome can be regulated by a process called phosphorylation - a chemical process by which a phosphate is added to a protein in order to activate or deactivate it, and which plays a crucial role in biological functions, controlling nearly every cellular process, including metabolism, gene transcription and translation, cell movement, and cell death. However, researchers had a poor understanding of the kinases that put the phosphate residues on the proteasome and almost no understanding of the phosphatases that remove the phosphates.

Now researchers have described for the first time how a eukaryotic phosphatase known as ubiquitin-like domain-containing C-terminal phosphatase (UBLCP1) regulates nuclear proteasome activity, revealing that UBLCP1 decreases proteasome activity by selectively dephosphorylating the proteasome.

"So far, UBLCP1 is the only proteasome-specific phosphatase identified to exist in mammalian cells," said Dixon. "We are just beginning to understand how it alters proteasome activity, but one can anticipate that defects in the phosphatase activity are likely to result in major alterations in the ability of the cell to remove damaged protein."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Younger adults face increasing risk of aggressive gastric cancer