TAU model discovers adaptable decision-making in bacteria communities

Much to humans' chagrin, bacteria have superior survival skills. Their decision-making processes and collective behaviors allow them to thrive and even spread efficiently in difficult environments.

Now researchers at Tel Aviv University have developed a computational model that better explains how bacteria move in a swarm - and this model can be applied to man-made technologies, including computers, artificial intelligence, and robotics. Ph.D. student Adi Shklarsh - with her supervisor Prof. Eshel Ben-Jacob of TAU's Sackler School of Physics and Astronomy, Gil Ariel from Bar Ilan University and Elad Schneidman from the Weizmann Institute of Science - has discovered how bacteria collectively gather information about their environment and find an optimal path to growth, even in the most complex terrains.

Studying the principles of bacteria navigation will allow researchers to design a new generation of smart robots that can form intelligent swarms, aid in the development of medical micro-robots used to diagnose or distribute medications in the body, or "de-code" systems used in social networks and throughout the Internet to gather information on consumer behaviors. The research was recently published in PLoS Computational Biology.

A dash of bacterial self-confidence

Bacteria aren't the only organisms that travel in swarms, says Shklarsh. Fish, bees, and birds also exhibit collective navigation. But as simple organisms with less sophisticated receptors, bacteria are not as well-equipped to deal with large amounts of information or "noise" in the complex environments they navigate, such as human tissue. The assumption has been, she says, that bacteria would be at a disadvantage compared to other swarming organisms.

But in a surprising discovery, the researchers found that computationally, bacteria actually have superior survival tactics, finding "food" and avoiding harm more easily than swarms such as amoeba or fish. Their secret? A liberal amount of self-confidence.

Many animal swarms, Shklarsh explains, can be harmed by "erroneous positive feedback," a common side effect of navigating complex terrains. This occurs when a subgroup of the swarm, based on wrong information, leads the entire group in the wrong direction. But bacteria communicate differently, through molecular, chemical and mechanical means, and can avoid this pitfall.

Based on confidence in their own information and decisions, "bacteria can adjust their interactions with their peers," Prof. Ben-Jacob says. "When an individual bacterium finds a more beneficial path, it pays less attention to the signals from the other cells. But at other times, upon encountering challenging paths, the individual cell will increase its interaction with the other cells and learn from its peers. Since each of the cells adopts the same strategy, the group as a whole is able to find an optimal trajectory in an extremely complex terrain."

Benefitting from short-term memory

In the computer model developed by the TAU researchers, bacteria decreased their peers' influence while navigating in a beneficial direction, but listened to each other when they sensed they were failing. This is not only a superior way to operate, but a simple one as well. Such a model shows how a swarm can perform optimally with only simple computational abilities and short term memory, says Shklarsh, It's also a principle that can be used to design new and more efficient technologies.

Robots are often required to navigate complex environments, such as terrains in space, deep in the sea, or the online world, and communicate their findings among themselves. Currently, this is based on complex algorithms and data structures that use a great deal of computer resources. Understanding the secrets of bacteria swarms, Shklarsh concludes, can provide crucial hints towards the design of new generation robots that are programmed to perform adjustable interactions without taking up a great amount of data or memory.

Source: American Friends of Tel Aviv University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How bacteria trigger colon cancer