Soligenix, Inc. (OTCBB: SNGX) (Soligenix or the Company), a development stage biopharmaceutical company, announced today that it has initiated a next generation anthrax vaccine development program pursuant to a field-exclusive option agreement with Harvard University to negotiate a license under patent rights that cover prophylactic uses of a modified anthrax toxin protein. Initial development work will be covered pursuant to a previously issued $9.4 million National Institute of Allergy and Infectious Disease (NIAID) grant enabling development of thermo-stable ricin and anthrax vaccines.
The option encompasses an issued U.S. patent that covers engineered variants of protective antigen (PA) developed in the Harvard Medical School laboratory of Dr. John Collier. PA is the principal determinant of protective immunity to anthrax. Soligenix believes that it will be able to develop the Collier anthrax vaccine with an efficacy profile superior to other anthrax vaccines.
There has been a major effort on the part of the federal government to develop improved vaccines for use both pre- and post anthrax exposure. The vaccine currently in use, known as AVA (anthrax vaccine adsorbed), consists of a defined, but impure, mixture of bacterial components. AVA is FDA approved, but requires multiple injections followed by annual boosters. Vaccines such as AVA or others based on purified, native recombinant PA (rPA) sequences induce antibodies that neutralize anthrax holotoxin and can strongly protect animals from inhaled anthrax spores. To date, the government has funded more than $4 billion in anthrax vaccine development and commercial contracts.
"We are pleased to secure from Harvard option rights under the patent that covers this promising anthrax vaccine and to initiate its development under our existing grant funding," stated Christopher J. Schaber, PhD, President and CEO of Soligenix. "We believe that the engineered PA variants can be used in platform technologies for delivery of single use or combination biodefense vaccines and will be useful for generating stable vaccines that induce antibodies in fewer doses than the conventional AVA or other rPA vaccines currently under development. Another significant improvement for stockpiled vaccines we intend to focus on would be extended stability relative to conventional vaccines. If long-term stability were achieved, the vaccine would have the potential to be stockpiled for general use and for post-exposure prophylaxis. We also envision expanding our thermostability technology into development of countermeasures against other more common infectious diseases."