New approach may prevent septic shock

Researchers of VIB and UGent have discovered a new approach to preventing septic shock, an often fatal extreme inflammatory reaction of the body. It is the most frequent cause of death at intensive care departments in hospitals. In sepsis, acute inflammation is attended by low blood pressure and blood clots, causing the organs to stop working. Only recently, the Brazilian football legend Socrates, died of the consequences of this condition. In a new study in the top journal Immunity, Peter Vandenabeele and colleagues of VIB-UGent described how blocking a particular form of cell death (necroptosis) fully protects mice against this fatal inflammation.

"This research opens up new perspectives for the treatment of fatal inflammatory diseases such as sepsis," says researcher Peter Vandenabeele of VIB and UGent. "By blocking necroptosis, we have found a possibly new target for a therapy."

Sepsis and SIRS

The Ghent scientists studied the Systemic Inflammatory Response Syndrome (SIRS). This is a severe inflammatory reaction affecting the entire body. It may be caused by an infection, such as sepsis, or by physical injury such as severe burns or a serious road accident.

Role of TNF in SIRS

The cytokine tumor necrosis factor (TNF) plays a crucial role in the occurrence of SIRS. The presence of TNF may trigger the cells to cause inflammation and programmed cell death. Inflammation is a necessary response in the body generated, among other things, to prevent or restore damage when injury and infections have been sustained. Programmed cell death can occur in two ways: via apoptosis or via necroptosis. The difference between the two forms of cell death lies among other things in communication with our immune system. Necroptosis usually provokes a strong reaction by the immune system whereas apoptosis proceeds unnoticed.

RIPK: potential therapeutic target for treatment of SIRS and sepsis

Peter Vandenabeele and his colleagues Linde Duprez, Nozomi Takahashi and Anje Cauwels have discovered that in mice eliminating apoptosis did not have any impact on lethal SIRS whereas eliminating nepcroptosis afforded full protection against the condition. The scientists managed to block nepcroptosis by eliminating RIPK (Receptor-interacting serine/threonine-protein kinase) molecules. The experiments showed that RIPK plays a crucial role in SIRS and sepsis. The molecule appears to constitute a potential therapeutic target for the treatment of SIRS and sepsis. Further research should clarify the potential applications of this discovery.

Source:

Immunity

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Heart attack recovery enhanced by human stem cell spheroids, study shows