Researchers discover new mechanism that regulates blood pressure

Analyzing all the genes of dozens of people suffering from a rare form of hypertension, Yale University researchers have discovered a new mechanism that regulates the blood pressure of all humans.

The findings by an international research team headed by Yale scientists, published online Jan. 22 in the journal Nature, may help explain what goes wrong in the one billion people who suffer from high blood pressure. The study also demonstrates the power of new DNA sequencing methods to find previously unknown disease-causing genes.

The team used a technique called whole exome sequencing - an analysis of the makeup of all the genes - to study a rare inherited form of hypertension characterized by excess levels of potassium in the blood. They found mutations in either of two genes that caused the disease in affected members of 41 families suffering from the condition.

The two genes interact with one another in a complex that targets other proteins for degradation, and they orchestrate the balance between salt reabsorption and potassium secretion in the kidney.

"These genes were not previously suspected to play a role in blood pressure regulation, but if they are lost, the kidney can't put the brakes on salt reabsorption, resulting in hypertension," said Richard Lifton, Sterling Professor and chair of the Department of Genetics at Yale and senior author of the paper.

The mutations had previously been difficult to find because there were very few affected members in each family, so traditional methods to map the genes' locations had been ineffective.

"The mutations in one gene were almost all new mutations found in affected patients but not their parents, while mutations in the other gene could be either dominant or recessive. The exome sequencing technology was ideally suited to cutting through these complexities," said Lynn Boyden of Yale, the first author of the paper.

The next step is to establish how these new components are involved in regulating sodium reabsorption in the kidney, in hopes of finding new ways intervene in hypertension, a major global health problem.

"We are finding all the individual parts to a complicated machine, and we need to understand how they are all put together to make the machine work," said Lifton, who is also an investigator of the Howard Hughes Medical Institute.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers identify a natural defense against blood vessel inflammation and atherosclerosis