ACTB and ACTG1 actin genes cause Baraitser-Winter syndrome

Scientists from Seattle Children's Research Institute and the University of Washington, in collaboration with the Genomic Disorders Group Nijmegen in the Netherlands, have identified two new genes that cause Baraitser-Winter syndrome, a rare brain malformation that is characterized by droopy eyelids and intellectual disabilities.

"This new discovery brings the total number of genes identified with this type of brain defect to eight," said William Dobyns, MD, a geneticist at Seattle Children's Research Institute. Identification of the additional genes associated with the syndrome make it possible for researchers to learn more about brain development. The study, "De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome," was published online February 26 in Nature Genetics.

The brain defect found in Baraitser-Winter syndrome is a smooth brain malformation or "lissencephaly," as whole or parts of the surface of the brain appear smooth in scans of patients with the disorder. Previous studies by Dr. Dobyns and other scientists identified six genes that cause the smooth brain malformation, accounting for approximately 80% of affected children. Physicians and researchers worldwide have identified to date approximately 20 individuals with Baraitser-Winter syndrome.

While the condition is rare, Dr. Dobyns said the team's findings have broad scientific implications. "Actins, or the proteins encoded by the ACTB and ACTG1 genes, are among the most important proteins in the function of individual cells," he said. "Actins are critical for cell division, cell movement, internal movement of cellular components, cell-to-cell contact, signaling and cell shape," said Dr. Dobyns, who is also a University of Washington professor of pediatrics. "The defects we found occur in the only two actin genes that are expressed in most cells," he said. Gene expression is akin to a "menu" for conditions like embryo development or healing from an injury. The correct combination of genes must be expressed at the right time to allow proper development. Abnormal expression of genes can lead to a defect or malformation.

"Birth defects associated with these two genes also seem to be quite severe," said Dr. Dobyns. "Children and people with these genes have short stature, an atypical facial appearance, birth defects of the eye, and the smooth brain malformation along with moderate mental retardation and epilepsy. Hearing loss occurs and can be progressive," he said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The X factor: Decoding brain aging differences between men and women