Researchers discover mechanism by which lead alters nerve cells in the brain

New research shows that it interferes with the synthesis and function of brain-derived neurotropic factor, derailing the brain's center for learning

Exposure to lead wreaks havoc in the brain, with consequences that include lower IQ and reduced potential for learning. But the precise mechanism by which lead alters nerve cells in the brain has largely remained unknown.

New research led by Tom-s R. Guilarte, PhD, Leon Hess Professor and Chair of Environmental Health Sciences at Columbia University Mailman School of Public Health, and post-doctoral research scientist Kirstie H. Stansfield, PhD, used high-powered fluorescent microscopy and other advanced techniques to painstakingly chart the varied ways lead inflicts its damage. They focused on signaling pathways involved in the production of brain-derived neurotropic factor, or BDNF, a chemical critical to the creation of new synapses in the hippocampus, the brain's center for memory and learning.

The study appears online in the journal Toxicological Sciences.

Once BDNF is produced in the nucleus, explains Dr. Stansfield, it is transported as cargo in a railroad-car-like vesicle along a track called a microtubule toward sites of release in the axon and dendritic spines. Vesicle navigation is controlled in part through activation (phosphorylation) of the huntingtin protein, which as its name suggests, was first identified through research into Huntington's disease. By looking at huntingtin expression, the researchers found that lead exposure, even in small amounts, is likely to impede or reverse the train by altering phosphorylation at a specific amino acid.

The BDNF vesicle transport slowdown is just one of a variety of ways that lead impedes BDNF's function. The researchers also explored how lead curbs production of BDNF in the cell nucleus. One factor, they say, may be a protein called methyl CpG binding protein 2, or MeCP2, which has been linked with RETT syndrome and autism spectrum disorders and acts to "silence" BDNF gene transcription.

The paper provides the first comprehensive working model of the ways by which lead exposure impairs synapse development and function. "Lead attacks the most fundamental aspect of the brain-the synapse. But by better understanding the numerous and complex ways this happens we will be better able to develop therapies that ameliorate the damage," says Dr. Guilarte.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Monoamine neurotransmitters emerge as architects of brain physiology