Researchers discover unknown mechanism that promotes growth and spread of cancer

Tiny vesicles released by tumors cells are taken up by healthy immune cells, causing the immune cells to discharge chemicals that foster cancer-cell growth and spread, according to a study by researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James) and at Children's Hospital in Los Angeles.

The study uses lung cancer cells to show that the vesicles contain potent regulatory molecules called microRNA, and that the uptake of these molecules by immune cells alters their behavior. The process in humans involves a fundamental receptor of the immune system called Toll-like receptor 8 (TLR8).

The findings, published in the early edition of the Proceedings of the National Academy of Sciences, suggest a new strategy for treating cancer and diseases of the immune system, the researchers say, and a new role for microRNA in the body.

"This study reveals a new function of microRNA, which we show binds to a protein receptor," says principal investigator Dr. Carlo Croce, director of Ohio State's Human Cancer Genetics program and a member of the OSUCCC - James Molecular Biology and Cancer Genetics program. "This tells us that some cancer-released microRNAs can bind and activate a receptor in a hormone-like fashion, and this has not been seen before."

MicroRNAs help control the type and amount of proteins that cells make, and they typically do this by binding with the messenger-RNA that encodes a protein.

"In this study we discovered a completely new mechanism used by cancer to grow and spread, therefore we can develop new drugs that fight tumors by entering this newly identified breach in cancer's fortress," says co-corresponding author and first author Dr. Muller Fabbri, assistant professor of Pediatrics and Molecular Biology and Immunology at the Keck School of Medicine of the University of Southern California.

"Equally exciting, we show that this mechanism involves a fundamental receptor of the immune system, TLR8, suggesting that the implications of this discovery may extend to other diseases such as autoimmune and inflammatory diseases," Fabbri says.

Key findings of the study include the following:

  • Lung tumor cells secrete microRNA-21 and microRNA-29a in vesicles called exosomes, and these exosomes are taken up by immune cells called macrophages located where tumor tissue abuts normal tissue.
  • In human macrophages, microRNA-29a and microRNA-21 bind with TLR8, causing the macrophages to secrete tumor-necrosis-factor alpha and interleukin-6, two cytokines that promote inflammation.
  • Increased levels of the two cytokines were associated with an increase in the number of tumors per lung in an animal model, while a drop in those levels led to a drop in the number per lung, suggesting that they also play a role in metastasis.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Innovative urine test could improve pancreatic cancer survival rates