Study identifies genetic markers that influence protein involved in regulating oestrogen, testosterone levels

A research study led by the Peninsula College of Medicine and Dentistry, University of Exeter, and Boston University School of Medicine, in collaboration with a global consortium, has identified genetic markers that influence a protein involved in regulating oestrogen and testosterone levels in the bloodstream.

The results, published online in PLoS Genetics, also reveal that some of the genetic markers for this protein are near genes related to liver function, metabolism and type 2 diabetes, demonstrating an important genetic connection between the metabolic and reproductive systems in men and women.

The study was carried out in collaboration with the Framingham Heart Study and investigators from 15 international epidemiologic studies participating in the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium.

Sex hormone binding globulin (SHBG) is the key protein that carries testosterone and oestrogen in the bloodstream in both men and women. As the main carrier of these sex hormones, SHBG helps to regulate their effects in different tissues and organs in the body. In addition to effects on reproduction in men and women through regulation of sex hormones, SHBG has been linked to many chronic diseases including type 2 diabetes and hormone-sensitive cancers such as breast and prostate.

Previous family studies have demonstrated that approximately 50 per cent of the variation in SHBG concentrations in the bloodstream is inherited from parents, suggesting that SHBG levels are under significant genetic control. However, little has been known about the specific genes that influence SHBG levels.

Investigators examined human genomes from 21,791 men and women to determine which genes influence SHBG levels and validated the results from this genome-wide association study (GWAS) in an additional 7,046 men and women. They identified 12 single-nucleotide polymorphisms (SNPs), or DNA sequence variations, associated with the concentration of SHBG circulating in the bloodstream. Although these genetic variants only explain a small fraction of the sex hormone variability seen between individuals, they could provide insight into the diseases connected to sex hormone regulation.

The results showed that the SNPs that influence SHBG levels are near genes related to liver function, fat and carbohydrate metabolism and type 2 diabetes. In addition, there were genes that had stronger effects in one sex compared to the other.

"These findings highlight the diverse range of biological processes that may be impacted by sex hormone regulation," said Dr. John Perry of the Peninsula College of Medicine and Dentistry, University of Exeter.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover key protein that helps cancer cells evade CAR T cell therapy