Ageing in neurons follows same rules as in senescing fibroblasts

The ageing process has its roots deep within the cells and molecules that make up our bodies. Experts have previously identified the molecular pathway that react to cell damage and stems the cell's ability to divide, known as cell senescence.

However, in cells that do not have this ability to divide, such as neurons in the brain and elsewhere, little was understood of the ageing process. Now a team of scientists at Newcastle University, led by Professor Thomas von Zglinicki have shown that these cells follow the same pathway.

This challenges previous assumptions on cell senescence and opens new areas to explore in terms of treatments for conditions such as dementia, motor neuron disease or age-related hearing loss.

Newcastle University's Professor Thomas von Zglinicki who led the research said: "We want to continue our work looking at the pathways in human brains as this study provides us with a new concept as to how damage can spread from the first affected area to the whole brain."

Working with the University's special colony of aged mice, the scientists have discovered that ageing in neurons follows exactly the same rules as in senescing fibroblasts, the cells which divide in the skin to repair wounds.

DNA damage responses essentially re-program senescent fibroblasts to produce and secrete a host of dangerous substances including oxygen free radicals or reactive oxygen species (ROS) and pro-inflammatory signalling molecules. This makes senescent cells the 'rotten apple in a basket' that can damage and spoil the intact cells in their neighbourhood. However, so far it was always thought that ageing in cells that can't divide - post-mitotic, non-proliferating cells - like neurons would follow a completely different pathway.

Now, this research explains that in fact ageing in neurons follows exactly the same rules as in senescing fibroblasts.

Professor von Zglinicki, professor of Cellular Gerontology at Newcastle University said: "We will now need to find out whether the same mechanisms we detected in mouse brains are also associated with brain ageing and cognitive loss in humans. We might have opened up a short-cut towards understanding brain ageing, should that be the case."

Dr Diana Jurk, who did most of this work during her PhD in the von Zglinicki group, said: "It was absolutely fascinating to see how ageing processes that we always thought of as completely separate turned out to be identical. Suddenly so much disparate knowledge came together and made sense."

The research contributes to the Newcastle Initiative on Changing Age, the University's response to the societal challenge of Ageing, seeking new ways to make the most of the extensive opportunities associated with increasing human longevity.

The team want to further study the mechanism using the unique resource of the Newcastle Brain Bank.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Think young, stay sharp? Positive aging outlook tied to improved cognitive self-perception