Researchers create mouse model that reproduces brain chemical changes associated with AD

Researchers at Western University have created a mouse model that reproduces some of the chemical changes in the brain that occur with Alzheimer's, shedding new light on this devastating disease. Marco Prado, Vania Prado and their colleagues at the Schulich School of Medicine & Dentistry's Robarts Research Institute, looked at changes related to a neurotransmitter or chemical messenger, named acetylcholine (ACh), and the kinds of memory problems associated with it. The research is now published online by PNAS.

The researchers, including first author Amanda Martyn, created a mouse line that doesn't have enough ACh being secreted by neurons in the same brain regions affected by Alzheimer's disease. They found this neurochemical failure caused problems with spatial memory, the stored information that is needed for navigating one's environment. For instance, the memory needed to drive across town. They also found the reduction of ACh led to hyperactivity, which many patients with Alzheimer's experience.

"Once we reproduced that neurochemical failure, we asked, 'how does that affect spatial memory, how does it affect learning?' We found mice that don't have that particular chemical messenger in specific areas of the brain, have problems with spatial memory, for example," says Marco Prado. "This reveals specific types of cognitive deficits that we can hope to improve with drugs that boost this chemical messenger."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Monoamine neurotransmitters emerge as architects of brain physiology