Injecting Wnt7a protein could prevent Duchenne muscular dystrophy

Scientists have discovered that injecting a novel human protein into muscle affected by Duchenne muscular dystrophy significantly increases its size and strength, findings that could lead to a therapy akin to the use of insulin by diabetics. These results were published today in the Proceedings of the National Academy of Sciences by Dr. Julia von Maltzahn and Dr. Michael Rudnicki, the Ottawa scientist who discovered muscle stem cells in adults.

"This is an unprecedented and dramatic restoration in muscle strength," says Dr. Rudnicki, a senior scientist and director for the Regenerative Medicine Program and Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute. He is also a Canada Research Chair in Molecular Genetics and professor in the Faculty of Medicine at the University of Ottawa.

"We know from our previous work that this protein, called Wnt7a, promotes the growth and repair of healthy muscle tissue. In this study we show the same types of improvement in a mouse model of Duchenne muscular dystrophy. We found that Wnt7a injections increased muscle strength almost two-fold, to nearly normal levels. We also found that the size of the muscle fibre increased and there was less muscle damage, compared to mice not given Wnt7a."

Duchenne muscular dystrophy is a genetic disorder that affects one of every 3,500 newborn males. In Canada, all types of muscular dystrophy affect more than 50,000 people. The disease often progresses to a state where the muscles are so depleted that the person dies due to an inability to breath. For people with Duchenne muscular dystrophy, this usually happens in their 20s or 30s.

"This is also exciting because we think it's a therapeutic approach that could apply to other muscle-wasting diseases," says Dr. Rudnicki.

Dr. Rudnicki's lab is a world leader in research on muscle stem cells. They have contributed significantly to our understanding of how these cells work at the molecular level. This basic research, which takes place in OHRI's multidisciplinary environment of collaboration with clinicians, led to the identification of Wnt7a as a promising candidate to help people with this muscle wasting disease.

Biotechnology partner, Fate Therapeutics is currently developing Wnt7a-based therapeutic candidates for treatment of muscular dystrophy and atrophy. Preclinical assessments are ongoing and the company plans to initiate clinical trials in the near future.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover mechanism affecting splicing process in retinal cells