SOX2 directly regulated by tumor suppressor CDKN1B(p27) gene

A team of researchers from the Spanish National Cancer Research Centre (CNIO), led by Manuel Serrano, from the Tumour Suppression Group, together with scientists from London and Santiago de Compostela, has discovered that the cellular reprogramming gene SOX2, which is involved in several types of cancers, such as lung cancer and pituitary cancer, is directly regulated by the tumor suppressor CDKN1B(p27) gene, which is also associated with these types of cancer.

The same edition of the online version of the journal also includes a study led by Massimo Squatrito, who recently joined the CNIO to direct the Seve Ballesteros Foundation Brain Tumour Group. This study, carried out in Eric C. Holland's laboratory, at the Memorial Sloan Kettering Cancer Center (MSKCC), in Nueva York, shows the relationship between MEF, a gene regulator involved glioblastomas - the most aggressive and common brain tumours -, and SOX2.

YAMANAKA'S CELLULAR REPROGRAMMING CONTINUES TO SURPRISE

The cell reprogramming process, discovered by this year's Nobel Prize winner, Shinya Yamanaka, has become a powerful tool for researchers. Via the introduction of a cocktail of four genes into cells, among them SOX2, scientists can reprogram cells and transform them into stem cells which can be used to study a variety of processes, including cancer.

The research team led by Manuel Serrano and Manuel Collado was interested in the possible role of the tumour suppressor gene CDKN1B(p27) in reprogramming. During the course of these studies, Han Li, first author of the study, unexpectedly discovered that cells deficient in the CDKN1B(p27) gene could be reprogrammed without the need to introduce SOX2. This observation was the starting point to unravel the functional relationship between both genes.

The work led by Squatrito, in which the researcher Elena Bazzoli figures as first author, was based on earlier works that linked SOX2 with tumorigenesis. The article describes how SOX2 is regulated by MEF in cells of the nervous system. "Brain tumour cells acquire stem cell traits thanks to the participation of SOX2, and this produces an increase in tumorigenic potential" states Squatrito.

These new insights help to understand the origin of cancers linked to CDKN1B(p27) and MEF, and highlight the potential role of adult stem cells in cancer.

Source: Centro Nacional de Investigaciones Oncologicas (CNIO)

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists map cancer mutations in EGFR gene, revealing drug resistance paths