Lack of TDP-43 protein can lead to frontotemporal dementia/ALS

Researchers at Mayo Clinic in Florida have uncovered a toxic cellular process by which a protein that maintains the health of neurons becomes deficient and can lead to dementia. The findings shed new light on the link between culprits implicated in two devastating neurological diseases: and amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The study is published Dec. 10 in the online issue of Proceedings of the National Academy of Sciences.

There is no cure for frontotemporal dementia, a disorder that affects personality, behavior and language and is second only to Alzheimer's disease as the most common form of early-onset dementia. While much research is devoted to understanding the role of each defective protein in these diseases, the team at Mayo Clinic took a new approach to examine the interplay between TDP-43, a protein that regulates messenger ribonucleic acid (mRNA) - biological molecules that carry the information of genes and are used by cells to guide protein synthesis - and sortilin, which regulates the protein progranulin.

"We sought to investigate how TDP-43 regulates the levels of the protein progranulin, given that extreme progranulin levels at either end of the spectrum, too low or too high, can respectively lead to neurodegeneration or cancer," says the study's lead investigator, Mercedes Prudencio, Ph.D., a neuroscientist at the Mayo Clinic campus in Florida.

The neuroscientists found that a lack of the protein TDP-43, long implicated in frontotemporal dementia and amyotrophic lateral sclerosis, leads to elevated levels of defective sortilin mRNA. The research team is the first to identify significantly elevated levels of the defective sortilin mRNA in autopsied human brain tissue of frontotemporal dementia/TDP cases, the most common subtype of the disease.

"We found a lack of TDP-43 disrupts the cellular process called mRNA splicing that precedes protein synthesis, resulting in the generation of a defective sortilin protein," Dr. Prudencio says. "More important, the defective sortilin binds to progranulin and as a result deprives neurons of progranulin's protective effects that stave off the cell death associated with disease."

By improving the scientific community's understanding of the biological processes leading to frontotemporal dementia, the researchers have also paved the way for the development of new therapies to prevent or combat the disease, says Leonard Petrucelli, Ph.D., chair of the Department of Neuroscience at Mayo Clinic in Florida, who led the research.

Source: Mayo Clinic

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough in protein engineering may lead to more effective cancer therapies