DNAzymes and gold nanoparticles used to detect infectious diseases

Infectious diseases such as malaria and syphilis can be diagnosed rapidly and reliably in the field by using a simple test developed by Canadian scientists. The test is based on the use of DNAzymes and gold nanoparticles. As the researchers report in the journal Angewandte Chemie, their test allows for the sensitive detection of bacteria, viruses, and parasites.

Dangerous infectious diseases must be identified in time in order to prevent them from spreading. The DNA of pathogens is an ideal biomarker and can easily be identified by PCR. However, this is only possible if expensive laboratory equipment and trained personnel are on hand. This may not be the case in remote locations or developing nations. Alternative methods that are simple and inexpensive while also remaining sensitive and specific are needed.

Kyryl Zagorovsky and Warren C.W. Chan at the University of Toronto (Canada) have now combined two modern technologies in a novel way: They have used DNAzymes as signal amplifiers and gold nanoparticles for detection. Gold nanoparticles (GNPs) absorb light. The wavelength of the light absorbed depends on whether the nanoparticles are separate or aggregated. The difference in color can be seen with the naked eye. A solution of individual particles appears red, whereas aggregates are blue-violet in color.

DNAzymes are synthetic DNA molecules that can enzymatically split other nucleic acid molecules. The researchers separated a DNAzyme into two inactive halves that both selectively bind to a specific gene segment of the pathogen to be detected. The act of binding reunites the halves and activates them.

For their test procedure, the scientists produced two sets of GNPs that bind to two different types of DNA strand, type A and type B. In addition, they synthesized a three-part “linker” made of DNA. One end of the linker is the complement to type A DNA; the second end is the complement to type B DNA. The center part is designed to be split by active DNAzymes.

In the test sample with no pathogen present, the DNAzymes remain inactive and the linkers remain intact. They bind to a GNP at each end and link the GNPs into larger aggregates, causing the solution to turn blue-violet. In contrast, if there is pathogen in the sample, the DNAzymes are activated and proceed to split the linkers. Now only the bridging parts of the linker can bind to DNA strands of the GNPs, so they cannot link the GNPs together. The solution stays red. Because every activated DNAzyme splits many linkers, it amplifies the signal.

This new type of test is simple and inexpensive; it can be made to detect every kind of pathogen, as the researchers demonstrated by detecting gonorrhea, syphilis, malaria, and hepatitis B. In a freeze-dried state, the reagents can be stored with no problem – an important requirement for use in the field.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nanomedicine using gas bubbles offers hope for lung cancer treatment