Study identifies genetic cause of developmental delay in Amish individuals in USA

Researchers from the research group in growth factors and cell differentiation at the University of Barcelona (UB) and the IDIBELL and have participated in an international study that has identified the genetic cause of developmental delay observed in Amish individuals in the USA. The research results have been published in the Journal of Medical Genetics.

Amish community

Amish is a religious community known for a simple and traditional style of life and for its reluctance to adopt modern amenities and technologies. The UB- IDIBELL researcher José Luis Rosa explains that "in these communities there are high rates of inbreeding, making homozygous recessive diseases more frequent than in the general population".

Among the Amish community, the researchers have observed individuals with similar mental retardation observed in patients with Angelman syndrome: learning disabilities, speech impairment, movement disorders and characteristic behavioral patterns of hyperactivity and concentration. "We observed", explains Rosa, "that there must be a common genetic cause."

Genetic studies of fifteen Individuals of Old Order Amish Community in Ohio (USA) identified a mutation in HERC2 gene. The result is an unstable protein that does not function properly.

Genetic counseling

These findings not only will be useful to study the pathophysiology of the retardation observed among members of the Amish community, but also will be a new tool in the field of genetic counseling.

"Individuals from anywhere in the world that have similar symptoms to Angelman syndrome but do not have the genetic mutation associated with the disease and are diagnosed as Angelman-like, could have the same gene mutation in HERC 2 observed in Amish, which could provide an explanation for the disorder, and genetic counseling to their families", explains the researcher.

Currently, the team lead by José Luis Rosa is studying how this mutation works at molecular level and they are attempting to reverse in vitro the mutation in HERC2 and rescue the cell function. Rosa warns, however, "that we are very far from being able to apply a human gene therapy for this neurological disorder".

This study demonstrates for the first time the relationship netween the protein HERC2 and human diseases. Previously, the group of José Luis Rosa had described the relationship between a point mutation in the HERC1 gene and neurodegeneration in mice. "Overall," says the researcher, "these studies demonstrate an important role of HERC protein family" in the pathogenesis of neuronal disorders.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Depression increases chances of experiencing menstrual pain